mosaic_2020/data_extraction_formatting_clinical.R

368 lines
12 KiB
R

#!/usr/bin/Rscript
getwd()
setwd('~/git/mosaic_2020/')
getwd()
########################################################################
# TASK: Extract clinical data columns and recode as required for analysis
# corrects the asthma and copd status for patients
# creates age_bins and other intervals for clinical params
# merges steroid ics data and outcome var based on T1 resp score
# The steroid_ics data file is read from outdir and has been manually sourced
# TODO: for extra caution add and run checks on the steroid_ics file
########################################################################
#====================
# Input: source data
# and steroid ics file
# This file contains steroid_ics data
# and another outcome variable based on T1_resp score
#====================
source("read_data.R")
source("colnames_clinical_meds.R")
# read: steroid_ics file
infile_ics = paste0(outdir, "data_ics.csv")
infile_ics
clinical_ics = read.csv(infile_ics)
str(clinical_ics)
########################################################################
# quick sanity checks
table(adult_df$ia_exac_copd==1 & adult_df$asthma == 1) # check this is 4
table(fp_adults$ia_exac_copd==1 & fp_adults$asthma == 1) # check this is 3
# clear unnecessary variables
rm(all_df, adult_df, metadata_all)
########################################################################
# Clinical_data extraction
########################################################################
cat("\nExtracting:", length(clinical_cols), "cols from fp_adults")
clinical_df = fp_adults[, clinical_cols]
# sanity checks
if ( sum(table(clinical_df$obesity)) & sum(table(clinical_df$age>=18)) & sum(table(clinical_df$death)) & sum(table(clinical_df$asthma)) == nrow(clinical_df) ){
cat("\nPASS: binary data obs are complete, n =", nrow(clinical_df))
}else{
cat("\nFAIL: Incomplete data for binary outcomes. Please check and decide!")
quit()
}
table(clinical_df$ia_exac_copd)
########################################################################
#==================================
# asthma and copd status correction
# for conflicting field!
#=================================
# Reassign the copd and asthma status and do some checks
table(clinical_df$ia_exac_copd); sum(is.na(clinical_df$ia_exac_copd))
clinical_df$ia_exac_copd[clinical_df$ia_exac_copd< 1]<- 0
clinical_df$ia_exac_copd[is.na(clinical_df$ia_exac_copd)] <- 0
table(clinical_df$ia_exac_copd); sum(is.na(clinical_df$ia_exac_copd))
# check copd and asthma status
table(clinical_df$ia_exac_copd, clinical_df$asthma)
check_copd_and_asthma_1<- subset(clinical_df, ia_exac_copd ==1 & asthma == 1) # check this is 3
# reassign these 3 so these are treated as non-asthmatics as copd with asthma is NOT TRUE asthma
clinical_df$asthma[clinical_df$ia_exac_copd == 1 & clinical_df$asthma == 1]= 0
table(clinical_df$ia_exac_copd, clinical_df$asthma)
foo<- subset(clinical_df, asthma==1 & ia_exac_copd ==1) # check that its 0
rm(check_copd_and_asthma_1, foo)
#=====================================================================
#=================================
# resp scores: In, max and t1 & t2
#=================================
# count the resp scores
max_resp_score_table<- table(clinical_df$max_resp_score)
max_resp_score_table
T1_resp_score_table<- table(clinical_df$T1_resp_score)
T1_resp_score_table
T2_resp_score_table<- table(clinical_df$T2_resp_score)
T2_resp_score_table
Inresp_sev<- table(clinical_df$inresp_sev)
Inresp_sev
# Reassign the resp score so all 4 are replace by 3
clinical_df$max_resp_score[clinical_df$max_resp_score ==4 ] <- 3
revised_resp_score_table<- table(clinical_df$max_resp_score)
revised_resp_score_table
clinical_df$T1_resp_score[clinical_df$T1_resp_score ==4 ] <- 3
revised_T1_resp_score_table<- table(clinical_df$T1_resp_score)
revised_T1_resp_score_table
clinical_df$T2_resp_score[clinical_df$T2_resp_score == 4]<- 3
revised_T2_resp_score_table<- table(clinical_df$T2_resp_score)
revised_T2_resp_score_table
clinical_df$inresp_sev[clinical_df$inresp_sev == 4]<- 3
revised_Inresp_sev<- table(clinical_df$inresp_sev)
revised_Inresp_sev
#=====================================================================
# Remove these after checking
rm(max_resp_score_table, T1_resp_score_table, T2_resp_score_table, Inresp_sev
, revised_resp_score_table, revised_T1_resp_score_table, revised_T2_resp_score_table, revised_Inresp_sev)
#=====================================================================
# Binning
# "(": not inclusive
# "]": inclusive
#========
# age
#========
# Create categories of variables
clinical_df$age = round(clinical_df$age, digits = 0)
table(clinical_df$age)
table(clinical_df$asthma, clinical_df$age)
min(clinical_df$age); max(clinical_df$age)
max_age_interval = round_any(max(clinical_df$age), 10, f = ceiling)
max_age_interval
min_age = min(clinical_df$age); min_age #19
min_age_interval = min_age - 1; min_age_interval
#age_bins = cut(clinical_df$age, c(0,18,30,40,50,60,70,80,90))
age_bins = cut(clinical_df$age, c(min_age_interval, 30, 40, 50, 60, 70, max_age_interval))
clinical_df$age_bins = age_bins
dim(clinical_df) # 133 27
# age_bins (to keep consistent with the results table)
class(clinical_df$age_bins)
levels(clinical_df$age_bins)
#"(18,30]" "(30,40]" "(40,50]" "(50,60]" "(60,70]" "(70,80]"
table(clinical_df$asthma, clinical_df$age_bins)
# (18,30] (30,40] (40,50] (50,60] (60,70] (70,80]
#0 25 17 25 14 11 1
#1 11 8 12 5 3 2
if (sum(table(clinical_df$asthma, clinical_df$age_bins)) == nrow(clinical_df) ){
cat("\nPASS: age_bins assigned successfully")
}else{
cat("\nFAIL: no. mismatch when assigning age_bins")
quit()
}
# reassign
class(clinical_df$age_bins)
levels(clinical_df$age_bins) <- c("(18,30]","(30,40]","(40,50]","(50,80]","(50,80]","(50,80]")
table(clinical_df$asthma, clinical_df$age_bins)
table(clinical_df$asthma, clinical_df$age_bins)
# (18,30] (30,40] (40,50] (50,80]
#0 25 17 25 26
#1 11 8 12 9
sum(table(clinical_df$asthma, clinical_df$age_bins)) == nrow(clinical_df)
#===========================
# O2 saturation binning
#===========================
clinical_df$o2_sat_admis = round(clinical_df$o2_sat_admis, digits = 0)
table(clinical_df$o2_sat_admis)
tot_o2 = sum(table(clinical_df$o2_sat_admis))- table(clinical_df$o2_sat_admis)[["-1"]]
tot_o2
o2_sat_bin = cut(clinical_df$o2_sat_admis, c(0,92,100))
clinical_df$o2_sat_bin = o2_sat_bin
table(clinical_df$o2_sat_bin)
sum(table(clinical_df$o2_sat_bin)) == tot_o2
#===========================
# Onset to initial binning
#===========================
max_in = max(clinical_df$onset_2_initial); max_in #23
min_in = min(clinical_df$onset_2_initial) - 1 ; min_in # -6
tot_onset2ini = sum(table(clinical_df$onset_2_initial))
tot_onset2ini
onset_initial_bin = cut(clinical_df$onset_2_initial, c(min_in, 4, max_in))
clinical_df$onset_initial_bin = onset_initial_bin
sum(table(clinical_df$onset_initial_bin)) == tot_onset2ini
#=======================
# seasonal flu: sfluv
#=======================
# should be a factor
if (! is.factor(clinical_df$sfluv)){
clinical_df$sfluv = as.factor(clinical_df$sfluv)
}
class(clinical_df$sfluv) #[1] "factor"
levels(clinical_df$sfluv)
table(clinical_df$asthma, clinical_df$sfluv)
# reassign
levels(clinical_df$sfluv) <- c("0", "0", "1")
table(clinical_df$asthma, clinical_df$sfluv)
#=======================
# h1n1v
#=======================
# should be a factor
if (! is.factor(clinical_df$h1n1v)){
clinical_df$h1n1v = as.factor(clinical_df$h1n1v)
}
class(clinical_df$h1n1v) #[1] "factor"
levels(clinical_df$h1n1v)
table(clinical_df$asthma, clinical_df$h1n1v)
# reassign
levels(clinical_df$h1n1v) <- c("0", "0", "1")
table(clinical_df$asthma, clinical_df$h1n1v)
#=======================
# ethnicity
#=======================
class(clinical_df$ethnicity) # integer
table(clinical_df$asthma, clinical_df$ethnicity)
clinical_df$ethnicity[clinical_df$ethnicity == 4] <- 2
table(clinical_df$asthma, clinical_df$ethnicity)
#=======================
# pneumonia
#=======================
class(clinical_df$ia_cxr) # integer
# ia_cxr 2 ---> yes pneumonia (1)
# 1 ---> no (0)
# ! 1 or 2 -- > "unkown"
# reassign the pneumonia codes
#0: not performed
#1: normal
#2: findings consistent with pneumonia
#3: abnormal
#-1: not recorded
#-2: n/a specified by the clinician # not in the data...
#-3: unknown specified by clinician
table(clinical_df$ia_cxr)
#-3 -1 0 1 2 3
#5 48 13 47 17 3
# change these first else recoding 0 will be a problem as 0 already exists, mind you -2 categ doesn't exist
clinical_df$ia_cxr[clinical_df$ia_cxr == -3 | clinical_df$ia_cxr == -1 | clinical_df$ia_cxr == 0 | clinical_df$ia_cxr == 3 ] <- NA
table(clinical_df$ia_cxr)
# 1 2
#69 47 17
clinical_df$ia_cxr[clinical_df$ia_cxr == 1] <- 0
clinical_df$ia_cxr[clinical_df$ia_cxr == 2] <- 1
table(clinical_df$ia_cxr)
# 0 1
#69 47 17
#=======================
# smoking [tricky one]
#=======================
class(clinical_df$smoking) # integer
table(clinical_df$asthma, clinical_df$smoking)
# orig
# -3 -1 1 2 3 4
#0 15 9 22 2 15 30
#1 4 2 13 0 4 17
# -3 -1 1 2 3 4
#0 14 9 20 2 15 30
#1 5 2 15 0 4 17
# never smoking, 4 and 2 -- > no (0)
#1 and 3 ---> yes (1)
#!-3 and -1 ---- > NA
################# smoking
#1: current daily ===> categ smoker(1)
#2: occasional =====> categ no smoker(0)
#3: ex-smoker ===> categ smoker(1)
#4: never =====> categ no smoker(0)
#-1: not recorded =====> categ blank (NA)
#-2: n/a specified by the clinician =====> categ blank (NA)
#-3: unknown specified by clinician=====> categ blank (NA)
table(clinical_df$smoking)
#-3 -1 1 2 3 4
#19 11 35 2 19 47
# reassign the smoking codes
clinical_df$smoking[clinical_df$smoking == 4 | clinical_df$smoking == 2 ] <- 0
clinical_df$smoking[clinical_df$smoking == 1 | clinical_df$smoking == 3 ] <- 1
clinical_df$smoking[clinical_df$smoking == -1 | clinical_df$smoking == -2 | clinical_df$smoking == -3 ] <- NA
table(clinical_df$smoking)
# 0 1
#30 49 54
table(clinical_df$asthma, clinical_df$smoking)
# orig
# 0 1
#0 24 32 37
#1 6 17 17
# 0 1
#0 23 32 35
#1 7 17 19
################################################################
#=========================
# Merge: clinical_df and infile ics
#=========================
merging_cols = intersect( names(clinical_df), names(clinical_ics) )
clinical_df_ics = merge(clinical_df, clinical_ics, by = merging_cols, all = T); clinical_df_ics
colnames(clinical_df_ics)
# change colname of logistic_outcome
c1 = which(colnames(clinical_df_ics) == "logistic_outcome")
colnames(clinical_df_ics)[c1] <- "t1_resp_recoded"
if (nrow(clinical_df_ics) == nrow(clinical_df) & nrow(clinical_ics)){
cat("\nPASS: No. of rows match, nrow =", nrow(clinical_df_ics)
, "\nChecking ncols...")
if ( ncol(clinical_df_ics) == ncol(clinical_df) + ncol(clinical_ics) - length(merging_cols) ){
cat("\nPASS: No. of cols match, ncol =", ncol(clinical_df_ics))
} else {
cat("\nFAIL: ncols mismatch"
, "Expected ncols:", ncol(clinical_df) + ncol(clinical_ics) - length(merging_cols)
, "\nGot:", ncol(clinical_df_ics))
}
} else {
cat("\nFAIL: nrows mismatch"
, "\nExpected nrows:", nrow(fp_adults))
}
#======================
# writing output file
#======================
outfile_name_reg = "clinical_df_recoded.csv"
outfile_reg = paste0(outdir, outfile_name_reg)
cat("\nWriting clinical file for regression:", outfile_reg)
write.csv(clinical_df_ics, file = outfile_reg)
################################################################
rm(age_bins, max_age_interval, max_in, min_in
, o2_sat_bin, onset_initial_bin, tot_o2
, tot_onset2ini, meta_data_cols
, clinical_df)