329 lines
9.9 KiB
R
Executable file
329 lines
9.9 KiB
R
Executable file
#!/usr/bin/Rscript
|
|
getwd()
|
|
setwd('~/git/mosaic_2020/')
|
|
getwd()
|
|
########################################################################
|
|
# TASK: Extract relevant columns from mosaic adults data
|
|
# npa
|
|
########################################################################
|
|
#====================
|
|
# Input: source data for clinical
|
|
#====================
|
|
source("data_extraction_formatting_clinical.R")
|
|
#source("colnames_clinical_meds.R")
|
|
#=======================================
|
|
# Data for mediator to include in regression
|
|
#=======================================
|
|
cat("Extracting", length(sig_npa_cols), "mediator cols from fp_adults")
|
|
|
|
med_df = fp_adults[, c("mosaic", sig_npa_cols)]
|
|
|
|
# sanity checks
|
|
if ( sum(table(clinical_df$obesity)) & sum(table(clinical_df$age>=18)) & sum(table(clinical_df$death)) & sum(table(clinical_df$asthma)) == nrow(clinical_df) ){
|
|
cat("PASS: binary data obs are complete, n =", nrow(clinical_df))
|
|
}else{
|
|
cat("FAIL: Incomplete data for binary outcomes. Please check and decide!")
|
|
quit()
|
|
}
|
|
|
|
table(clinical_df$ia_exac_copd)
|
|
|
|
########################################################################
|
|
# Data extraction for regression
|
|
########################################################################
|
|
|
|
common_cols = names(clinical_df)[names(clinical_df)%in%names(med_df)]
|
|
|
|
cat("\nMerging clinical and mediator data for regression"
|
|
,"\nMerging on column:", common_cols)
|
|
|
|
reg_data = merge(clinical_df, med_df
|
|
, by = common_cols)
|
|
|
|
if (nrow(reg_data) == nrow(clinical_df) & nrow(med_df)){
|
|
cat("\nNo. of rows match, nrow =", nrow(clinical_df)
|
|
, "\nChecking ncols...")
|
|
if ( ncol(reg_data) == ncol(clinical_df) + ncol(med_df) - length(common_cols) ){
|
|
cat("\nNo. of cols match, ncol =", ncol(reg_data))
|
|
} else {
|
|
cat("FAIL: ncols mismatch"
|
|
, "Expected ncols:", ncol(clinical_df) + ncol(med_df) - length(common_cols)
|
|
, "\nGot:", ncol(reg_data))
|
|
}
|
|
} else {
|
|
cat("FAIL: nrows mismatch"
|
|
, "\nExpected nrows:", nrow(fp_adults))
|
|
}
|
|
|
|
########################################################################
|
|
# Reassign the copd and asthma status and do some checks
|
|
table(reg_data$ia_exac_copd); sum(is.na(reg_data$ia_exac_copd))
|
|
|
|
reg_data$ia_exac_copd[reg_data$ia_exac_copd< 1]<- 0
|
|
reg_data$ia_exac_copd[is.na(reg_data$ia_exac_copd)] <- 0
|
|
|
|
table(reg_data$ia_exac_copd); sum(is.na(reg_data$ia_exac_copd))
|
|
|
|
# check copd and asthma status
|
|
table(reg_data$ia_exac_copd, reg_data$asthma)
|
|
check_copd_and_asthma_1<- subset(reg_data, ia_exac_copd ==1 & asthma == 1) # check this is 3
|
|
|
|
# reassign these 3 so these are treated as non-asthmatics as copd with asthma is NOT TRUE asthma
|
|
reg_data$asthma[reg_data$ia_exac_copd == 1 & reg_data$asthma == 1]= 0
|
|
table(reg_data$ia_exac_copd, reg_data$asthma)
|
|
|
|
foo<- subset(reg_data, asthma==1 & ia_exac_copd ==1) # check that its 0
|
|
|
|
rm(check_copd_and_asthma_1, foo)
|
|
#=====================================================================
|
|
# count the resp scores
|
|
max_resp_score_table<- table(reg_data$max_resp_score)
|
|
max_resp_score_table
|
|
|
|
T1_resp_score_table<- table(reg_data$T1_resp_score)
|
|
T1_resp_score_table
|
|
|
|
T2_resp_score_table<- table(reg_data$T2_resp_score)
|
|
T2_resp_score_table
|
|
|
|
Inresp_sev<- table(reg_data$inresp_sev)
|
|
Inresp_sev
|
|
|
|
# Reassign the resp score so all 4 are replace by 3
|
|
reg_data$max_resp_score[reg_data$max_resp_score ==4 ] <- 3
|
|
revised_resp_score_table<- table(reg_data$max_resp_score)
|
|
revised_resp_score_table
|
|
|
|
reg_data$T1_resp_score[reg_data$T1_resp_score ==4 ] <- 3
|
|
revised_T1_resp_score_table<- table(reg_data$T1_resp_score)
|
|
revised_T1_resp_score_table
|
|
|
|
reg_data$T2_resp_score[reg_data$T2_resp_score == 4]<- 3
|
|
revised_T2_resp_score_table<- table(reg_data$T2_resp_score)
|
|
revised_T2_resp_score_table
|
|
|
|
reg_data$inresp_sev[reg_data$inresp_sev == 4]<- 3
|
|
revised_Inresp_sev<- table(reg_data$inresp_sev)
|
|
revised_Inresp_sev
|
|
#=====================================================================
|
|
# Remove these after checking
|
|
rm(max_resp_score_table, T1_resp_score_table, T2_resp_score_table, Inresp_sev
|
|
, revised_resp_score_table, revised_T1_resp_score_table, revised_T2_resp_score_table, revised_Inresp_sev)
|
|
#=====================================================================
|
|
# Binning
|
|
# "(": not inclusive
|
|
# "]": inclusive
|
|
|
|
#========
|
|
# age
|
|
#========
|
|
# Create categories of variables
|
|
reg_data$age = round(reg_data$age, digits = 0)
|
|
table(reg_data$age)
|
|
table(reg_data$asthma, reg_data$age)
|
|
min(reg_data$age); max(reg_data$age)
|
|
|
|
max_age_interval = round_any(max(reg_data$age), 10, f = ceiling)
|
|
max_age_interval
|
|
min_age = min(reg_data$age); min_age #19
|
|
min_age_interval = min_age - 1; min_age_interval
|
|
|
|
#age_bins = cut(reg_data$age, c(0,18,30,40,50,60,70,80,90))
|
|
age_bins = cut(reg_data$age, c(min_age_interval, 30, 40, 50, 60, 70, max_age_interval))
|
|
reg_data$age_bins = age_bins
|
|
dim(reg_data) # 133 27
|
|
|
|
# age_bins (to keep consistent with the results table)
|
|
class(reg_data$age_bins)
|
|
levels(reg_data$age_bins)
|
|
#"(18,30]" "(30,40]" "(40,50]" "(50,60]" "(60,70]" "(70,80]"
|
|
table(reg_data$asthma, reg_data$age_bins)
|
|
# (18,30] (30,40] (40,50] (50,60] (60,70] (70,80]
|
|
#0 25 17 25 14 11 1
|
|
#1 11 8 12 5 3 2
|
|
|
|
if (sum(table(reg_data$asthma, reg_data$age_bins)) == nrow(reg_data) ){
|
|
cat("PASS: age_bins assigned successfully")
|
|
}else{
|
|
cat("FAIL: no. mismatch when assigning age_bins")
|
|
quit()
|
|
}
|
|
|
|
# reassign
|
|
class(reg_data$age_bins)
|
|
levels(reg_data$age_bins) <- c("(18,30]","(30,40]","(40,50]","(50,80]","(50,80]","(50,80]")
|
|
table(reg_data$asthma, reg_data$age_bins)
|
|
table(reg_data$asthma, reg_data$age_bins)
|
|
# (18,30] (30,40] (40,50] (50,80]
|
|
#0 25 17 25 26
|
|
#1 11 8 12 9
|
|
|
|
sum(table(reg_data$asthma, reg_data$age_bins)) == nrow(reg_data)
|
|
|
|
#===========================
|
|
# O2 saturation binning
|
|
#===========================
|
|
reg_data$o2_sat_admis = round(reg_data$o2_sat_admis, digits = 0)
|
|
table(reg_data$o2_sat_admis)
|
|
tot_o2 = sum(table(reg_data$o2_sat_admis))- table(reg_data$o2_sat_admis)[["-1"]]
|
|
tot_o2
|
|
|
|
o2_sat_bin = cut(reg_data$o2_sat_admis, c(0,92,100))
|
|
reg_data$o2_sat_bin = o2_sat_bin
|
|
table(reg_data$o2_sat_bin)
|
|
|
|
sum(table(reg_data$o2_sat_bin)) == tot_o2
|
|
|
|
#===========================
|
|
# Onset to initial binning
|
|
#===========================
|
|
max_in = max(reg_data$onset_2_initial); max_in #23
|
|
min_in = min(reg_data$onset_2_initial) - 1 ; min_in # -6
|
|
|
|
tot_onset2ini = sum(table(reg_data$onset_2_initial))
|
|
tot_onset2ini
|
|
|
|
onset_initial_bin = cut(reg_data$onset_2_initial, c(min_in, 4, max_in))
|
|
reg_data$onset_initial_bin = onset_initial_bin
|
|
|
|
sum(table(reg_data$onset_initial_bin)) == tot_onset2ini
|
|
|
|
#=======================
|
|
# seasonal flu: sfluv
|
|
#=======================
|
|
# should be a factor
|
|
if (! is.factor(reg_data$sfluv)){
|
|
reg_data$sfluv = as.factor(reg_data$sfluv)
|
|
}
|
|
class(reg_data$sfluv) #[1] "factor"
|
|
|
|
levels(reg_data$sfluv)
|
|
table(reg_data$asthma, reg_data$sfluv)
|
|
# reassign
|
|
levels(reg_data$sfluv) <- c("0", "0", "1")
|
|
table(reg_data$asthma, reg_data$sfluv)
|
|
|
|
#=======================
|
|
# h1n1v
|
|
#=======================
|
|
# should be a factor
|
|
if (! is.factor(reg_data$h1n1v)){
|
|
reg_data$h1n1v = as.factor(reg_data$h1n1v)
|
|
}
|
|
class(reg_data$h1n1v) #[1] "factor"
|
|
|
|
levels(reg_data$h1n1v)
|
|
table(reg_data$asthma, reg_data$h1n1v)
|
|
# reassign
|
|
levels(reg_data$h1n1v) <- c("0", "0", "1")
|
|
table(reg_data$asthma, reg_data$h1n1v)
|
|
|
|
#=======================
|
|
# ethnicity
|
|
#=======================
|
|
class(reg_data$ethnicity) # integer
|
|
table(reg_data$asthma, reg_data$ethnicity)
|
|
|
|
reg_data$ethnicity[reg_data$ethnicity == 4] <- 2
|
|
table(reg_data$asthma, reg_data$ethnicity)
|
|
|
|
#=======================
|
|
# pneumonia
|
|
#=======================
|
|
class(reg_data$ia_cxr) # integer
|
|
# ia_cxr 2 ---> yes pneumonia (1)
|
|
# 1 ---> no (0)
|
|
# ! 1 or 2 -- > "unkown"
|
|
|
|
# reassign the pneumonia codes
|
|
#0: not performed
|
|
#1: normal
|
|
#2: findings consistent with pneumonia
|
|
#3: abnormal
|
|
#-1: not recorded
|
|
#-2: n/a specified by the clinician # not in the data...
|
|
#-3: unknown specified by clinician
|
|
|
|
|
|
table(reg_data$ia_cxr)
|
|
#-3 -1 0 1 2 3
|
|
#5 48 13 47 17 3
|
|
|
|
# change these first else recoding 0 will be a problem as 0 already exists, mind you -2 categ doesn't exist
|
|
reg_data$ia_cxr[reg_data$ia_cxr == -3 | reg_data$ia_cxr == -1 | reg_data$ia_cxr == 0 | reg_data$ia_cxr == 3 ] <- ""
|
|
table(reg_data$ia_cxr)
|
|
# 1 2
|
|
#69 47 17
|
|
|
|
reg_data$ia_cxr[reg_data$ia_cxr == 1] <- 0
|
|
reg_data$ia_cxr[reg_data$ia_cxr == 2] <- 1
|
|
table(reg_data$ia_cxr)
|
|
# 0 1
|
|
#69 47 17
|
|
|
|
#=======================
|
|
# smoking [tricky one]
|
|
#=======================
|
|
class(reg_data$smoking) # integer
|
|
table(reg_data$asthma, reg_data$smoking)
|
|
|
|
# orig
|
|
# -3 -1 1 2 3 4
|
|
#0 15 9 22 2 15 30
|
|
#1 4 2 13 0 4 17
|
|
|
|
# -3 -1 1 2 3 4
|
|
#0 14 9 20 2 15 30
|
|
#1 5 2 15 0 4 17
|
|
|
|
# never smoking, 4 and 2 -- > no (0)
|
|
#1 and 3 ---> yes (1)
|
|
#!-3 and -1 ---- > NA
|
|
|
|
################# smoking
|
|
|
|
#1: current daily ===> categ smoker(1)
|
|
#2: occasional =====> categ no smoker(0)
|
|
#3: ex-smoker ===> categ smoker(1)
|
|
#4: never =====> categ no smoker(0)
|
|
#-1: not recorded =====> categ blank (NA)
|
|
#-2: n/a specified by the clinician =====> categ blank (NA)
|
|
#-3: unknown specified by clinician=====> categ blank (NA)
|
|
|
|
table(reg_data$smoking)
|
|
#-3 -1 1 2 3 4
|
|
#19 11 35 2 19 47
|
|
|
|
# reassign the smoking codes
|
|
reg_data$smoking[reg_data$smoking == 4 | reg_data$smoking == 2 ] <- 0
|
|
reg_data$smoking[reg_data$smoking == 1 | reg_data$smoking == 3 ] <- 1
|
|
reg_data$smoking[reg_data$smoking == -1 | reg_data$smoking == -2 | reg_data$smoking == -3 ] <- ""
|
|
|
|
table(reg_data$smoking)
|
|
# 0 1
|
|
#30 49 54
|
|
|
|
table(reg_data$asthma, reg_data$smoking)
|
|
|
|
# orig
|
|
# 0 1
|
|
#0 24 32 37
|
|
#1 6 17 17
|
|
|
|
# 0 1
|
|
#0 23 32 35
|
|
#1 7 17 19
|
|
|
|
################################################################
|
|
#==================
|
|
# writing output file
|
|
#==================
|
|
outfile_name_reg = "reg_data_recoded_with_NA.csv"
|
|
outfile_reg = paste0(outdir, outfile_name_reg)
|
|
|
|
cat("Writing clinical file for regression:", outfile_reg)
|
|
|
|
#write.csv(reg_data, file = outfile_reg)
|
|
################################################################
|
|
|
|
rm(age_bins, max_age_interval, max_in, min_in, o2_sat_bin, onset_initial_bin, tot_o2, tot_onset2ini, meta_data_cols)
|