#!/usr/bin/Rscript getwd() setwd('~/git/mosaic_2020/') getwd() ######################################################################## # TASK: Run regression analysis # npa ######################################################################## #================================================================================= # TO DO: # Simple stats b/w obesity and non-obesity to consider including in reg analysis # Include NPA statistically sign params # Rerun graphs and plots without asthma? #================================================================================= #==================== # Input: source data #==================== source("data_extraction_formatting_clinical.R") rm(fp_adults, metadata_all) ######################################################################## my_data = reg_data ######################################################################### # check factor of each column lapply(my_data, class) character_vars <- lapply(my_data, class) == "character" character_vars table(character_vars) factor_vars <- lapply(my_data, class) == "factor" table(factor_vars) my_data[, character_vars] <- lapply(my_data[, character_vars], as.factor) factor_vars <- lapply(my_data, class) == "factor" factor_vars table(factor_vars) # check again lapply(my_data, class) table(my_data$ethnicity) my_data$ethnicity = as.factor(my_data$ethnicity) class(my_data$ethnicity) colnames(my_data) reg_param = c("age" , "age_bins" #, "death" # outcome , "asthma" , "obesity" , "gender" , "los" , "o2_sat_admis" #, "logistic_outcome" #, "steroid_ics" , "ethnicity" , "smoking" , "sfluv" , "h1n1v" , "ia_cxr" , "max_resp_score" , "T1_resp_score" , "com_noasthma" , "onset_initial_bin") for(i in reg_param) { # print (i) p_form = as.formula(paste("death ~ ", i ,sep = "")) model_reg = glm(p_form , family = binomial, data = my_data) print(summary(model_reg)) print(exp(cbind(OR = coef(model_reg), confint(model_reg)))) #print (PseudoR2(model_reg)) cat("=================================================================================\n") } full_mod = glm(death ~ asthma + gender + age_bins + los + #ethnicity + onset_initial_bin + o2_sat_bin + com_noasthma + obesity + #ia_cxr + smoking + #sfluv + #h1n1v max_resp_score + T1_resp_score + , family = "binomial", data = my_data) summary(full_mod)