#!/usr/bin/Rscript getwd() setwd("~/git/mosaic_2020/") getwd() ############################################################ # TASK: boxplots at T1 # FIXME: currently not rendering, problem with NAs for stats? ############################################################ #============= # Input #============= #source("boxplot_linear.R") ####################################################### med_names = c("eotaxin3", "il12p70", "itac", "il13") lf_test = lf_fp_npa[lf_fp_npa$mediator%in%med_names,] mediators = levels(as.factor(lf_test$mediator)) plots <- list() for (i in mediators) { single=lf_test[lf_test$mediator==i,] max_y = max(single$value, na.rm = T) cat("Plotting:", i, "max_y:", max_y, "\n") p2 = ggplot(single)+ geom_boxplot(aes(x = timepoint , y = value , color = obesity #, palette = c("#00BFC4", "#F8766D") ))+ theme(axis.text.x = element_text(size = 15) , axis.text.y = element_text(size = 15 , angle = 0 , hjust = 1 , vjust = 0) , axis.title.x = element_blank() , axis.title.y = element_blank() , legend.position = "none" , plot.subtitle = element_text(size = 20, hjust = 0.5) , plot.title = element_text(size = 20, hjust = 0.5)) + labs(title = i #, subtitle = "test2" ) stat_npa2 <- single %>% group_by(timepoint, mediator) %>% wilcox_test(value ~ obesity, paired = F) %>% add_significance("p") stat_npa2 stat_npa2 <- stat_npa2 %>% add_xy_position(x = "timepoint", dodge = 0.8) p2 = p2 + stat_pvalue_manual(stat_npa2 #, y.position = max_y , label = "{p} {p.signif}" , hide.ns=T , tip.length = 0)+ scale_y_continuous(expand = expansion(mult = c(0.05, 0.25))) plots[[i]] <- p2 } cowplot::plot_grid(plotlist=plots, align = 'hv', ncol=2, nrow=2) ################################################################## #======= # facet #======= #-------- # wilcox stats #-------- stat_npa3 <- lf_test %>% group_by(timepoint, mediator) %>% wilcox_test(value ~ obesity, paired = F) %>% add_significance("p") stat_npa3 stat_npa3 <- stat_npa3 %>% add_xy_position(x = "timepoint", dodge = 0.8) head(stat_npa3) #-------- # summary stats #-------- my_summary = lf_test %>% group_by(timepoint, mediator) %>% get_summary_stats(value) my_summary my_max_df = subset(my_summary , select = c("mediator", "timepoint" #, "obesity" , "max")) head(my_max_df); head(stat_npa3) #----------------------------- # merge my_max and stat_npa3 #----------------------------- head(my_max_df) merging_cols = intersect(names(stat_npa3), names(my_max_df)); merging_cols stat_npa3_v2 = merge(stat_npa3, my_max_df, by = merging_cols, all.x = T) stat_npa3_v2$my_y_pos = (stat_npa3_v2$max)*1.2 stat_npa3_v2$my_y_pos head(stat_npa3_v2); head(stat_npa3) p3 = ggplot(lf_test)+ geom_boxplot(aes(x = timepoint , y = value , color = obesity))+ theme(axis.text.x = element_text(size = 15) , axis.text.y = element_text(size = 15 , angle = 0 , hjust = 1 , vjust = 0) , axis.title.x = element_blank() , axis.title.y = element_blank() , legend.position = "none" , plot.subtitle = element_text(size = 20, hjust = 0.5) , plot.title = element_text(size = 20, hjust = 0.5)) + labs(title ="NPA")+ #facet_wrap(~mediator, scales = "free") p3_build = ggbuild(p3) p4 = p3 + stat_pvalue_manual(stat_npa3_v2 , y.position = "my_y_pos" #, y.position = 50 , label = "{p} {p.signif}" , hide.ns=T , tip.length = 0)+ scale_y_continuous(expand = expansion(mult = c(0.05, 0.25))) p4 #======================================== p3_build = ggplot_build(p3) p3_build$layout$panel_scales_y get_facet_ymax <- function (x){ ret <- x$layout$panel_scales_y y_max = NULL for (i in 1:length(ret)){ print(i) y_max_i <- max(x$layout$panel_scales_y[[i]]$range$range) y_max = c(y_max, y_max_i) } return(y_max) } y_max_l = get_facet_ymax(p3_build); y_max_l