#!/usr/bin/Rscript getwd() setwd('~/git/mosaic_2020/') getwd() ######################################################################## # TASK: Extract relevant columns from mosaic adults data # npa ######################################################################## #==================== # Input: source data #==================== source("read_data.R") source("reg_cols_extraction.R") ######################################################################## #========== # #========== # extract the flu positive population fp_adults = adult_df[adult_df$flustat == 1,] ######################################################################## table(adult_df$ia_exac_copd) table(adult_df$ia_exac_copd==1 & adult_df$asthma == 1) # check this is 4 table(fp_adults$ia_exac_copd==1 & fp_adults$asthma == 1) # check this is 3 # clear unnecessary variables rm(all_df) rm(adult_df) ######################################################################## reg_data = fp_adults[, cols_to_extract] # sanity checks table(reg_data$obesity) #table(reg_data$obese2) table(reg_data$age>=18) table(reg_data$death) table(reg_data$asthma) table(reg_data$ia_exac_copd) ######################################################################## # Reassign the copd and asthma status and do some checks table(reg_data$ia_exac_copd); sum(is.na(reg_data$ia_exac_copd)) reg_data$ia_exac_copd[reg_data$ia_exac_copd< 1]<- 0 reg_data$ia_exac_copd[is.na(reg_data$ia_exac_copd)] <- 0 table(reg_data$ia_exac_copd); sum(is.na(reg_data$ia_exac_copd)) # check copd and asthma status table(reg_data$ia_exac_copd, reg_data$asthma) check_copd_and_asthma_1<- subset(reg_data, ia_exac_copd ==1 & asthma == 1) # check this is 3 # reassign these 4 so these are treated as non-asthmatics as copd with asthma is not TRUE asthma reg_data$asthma[reg_data$ia_exac_copd == 1 & reg_data$asthma == 1]= 0 table(reg_data$ia_exac_copd, reg_data$asthma) foo<- subset(reg_data, asthma==1 & ia_exac_copd ==1) # check that its 0 rm(check_copd_and_asthma_1, foo) #===================================================================== # count the resp scores max_resp_score_table<- table(reg_data$max_resp_score) max_resp_score_table T1_resp_score_table<- table(reg_data$T1_resp_score) T1_resp_score_table T2_resp_score_table<- table(reg_data$T2_resp_score) T2_resp_score_table Inresp_sev<- table(reg_data$inresp_sev) Inresp_sev # Reassign the resp score so all 4 are replace by 3 reg_data$max_resp_score[reg_data$max_resp_score ==4 ] <- 3 revised_resp_score_table<- table(reg_data$max_resp_score) revised_resp_score_table reg_data$T1_resp_score[reg_data$T1_resp_score ==4 ] <- 3 revised_T1_resp_score_table<- table(reg_data$T1_resp_score) revised_T1_resp_score_table reg_data$T2_resp_score[reg_data$T2_resp_score == 4]<- 3 revised_T2_resp_score_table<- table(reg_data$T2_resp_score) revised_T2_resp_score_table reg_data$inresp_sev[reg_data$inresp_sev == 4]<- 3 revised_Inresp_sev<- table(reg_data$inresp_sev) revised_Inresp_sev #===================================================================== # Remove these after checking rm(max_resp_score_table, T1_resp_score_table, T2_resp_score_table, Inresp_sev , revised_resp_score_table, revised_T1_resp_score_table, revised_T2_resp_score_table, revised_Inresp_sev) #===================================================================== ##### age # Create categories of variables reg_data$age = round(reg_data$age, digits = 0) table(reg_data$age) table(reg_data$asthma, reg_data$age) min(reg_data$age); max(reg_data$age) library(plyr) max_age_interval = round_any(max(reg_data$age), 10, f = ceiling) max_age_interval #age_bins = cut(reg_data$age, c(0,18,30,40,50,60,70,80,90)) age_bins = cut(reg_data$age, c(18, 30, 40, 50, 60, 70, max_age_interval)) reg_data$age_bins = age_bins dim(reg_data) # 133 27 #age_bins (to keep consistent with the results table) class(reg_data$age_bins) levels(reg_data$age_bins) #"(18,30]" "(30,40]" "(40,50]" "(50,60]" "(60,70]" "(70,80]" table(reg_data$asthma, reg_data$age_bins) # (18,30] (30,40] (40,50] (50,60] (60,70] (70,80] #0 25 17 23 14 10 1 #1 11 8 14 5 3 2 sum(table(reg_data$asthma, reg_data$age_bins)) == nrow(reg_data) #reassign levels(reg_data$age_bins) <- c("(18,30]","(30,40]","(40,50]","(50,80]","(50,80]","(50,80]") table(reg_data$asthma, reg_data$age_bins) table(reg_data$asthma, reg_data$age_bins) #(18,30] (30,40] (40,50] (50,60] #0 25 17 23 25 #1 11 8 14 10 sum(table(reg_data$asthma, reg_data$age_bins)) == nrow(reg_data) ##### O2 saturation binning reg_data$o2_sat_admis = round(reg_data$o2_sat_admis, digits = 0) table(reg_data$o2_sat_admis) tot_o2 = sum(table(reg_data$o2_sat_admis))- table(reg_data$o2_sat_admis)[["-1"]] tot_o2 o2_sat_bin = cut(reg_data$o2_sat_admis, c(0,92,100)) reg_data$o2_sat_bin = o2_sat_bin table(reg_data$o2_sat_bin) sum(table(reg_data$o2_sat_bin)) == tot_o2 ##### Onset to initial binning = "(==not inclusive) max_in = max(reg_data$onset_2_initial); max_in #23 min_in = min(reg_data$onset_2_initial) - 1 ; min_in # -6 tot_onset2ini = sum(table(reg_data$onset_2_initial)) tot_onset2ini onset_initial_bin = cut(reg_data$onset_2_initial, c(min_in, 4, max_in)) reg_data$onset_initial_bin = onset_initial_bin sum(table(reg_data$onset_initial_bin)) == tot_onset2ini #======================= # seasonal flu: sfluv #======================= # should be a factor if (! is.factor(reg_data$sfluv)){ reg_data$sfluv = as.factor(reg_data$sfluv) } class(reg_data$sfluv) #[1] "factor" levels(reg_data$sfluv) table(reg_data$asthma, reg_data$sfluv) # reassign levels(reg_data$sfluv) <- c("0", "0", "1") table(reg_data$asthma, reg_data$sfluv) #======================= # h1n1v #======================= # should be a factor if (! is.factor(reg_data$h1n1v)){ reg_data$h1n1v = as.factor(reg_data$h1n1v) } class(reg_data$h1n1v) #[1] "factor" levels(reg_data$h1n1v) table(reg_data$asthma, reg_data$h1n1v) # reassign levels(reg_data$h1n1v) <- c("0", "0", "1") table(reg_data$asthma, reg_data$h1n1v) #======================= # ethnicity #======================= class(reg_data$ethnicity) # integer table(reg_data$asthma, reg_data$ethnicity) reg_data$ethnicity[reg_data$ethnicity == 4] <- 2 table(reg_data$asthma, reg_data$ethnicity) #======================= # pneumonia #======================= class(reg_data$ia_cxr) # integer # ia_cxr 2 ---> yes pneumonia (1) # 1 ---> no (0) # ! 1 or 2 -- > "unkown" # reassign the pneumonia codes #0: not performed #1: normal #2: findings consistent with pneumonia #3: abnormal #-1: not recorded #-2: n/a specified by the clinician # not in the data... #-3: unknown specified by clinician table(reg_data$ia_cxr) #-3 -1 0 1 2 3 #5 48 13 47 17 3 # change these first else recoding 0 will be a problem as 0 already exists, mind you -2 categ doesn't exist reg_data$ia_cxr[reg_data$ia_cxr == -3 | reg_data$ia_cxr == -1 | reg_data$ia_cxr == 0 | reg_data$ia_cxr == 3 ] <- "" table(reg_data$ia_cxr) # 1 2 #69 47 17 reg_data$ia_cxr[reg_data$ia_cxr == 1] <- 0 reg_data$ia_cxr[reg_data$ia_cxr == 2] <- 1 table(reg_data$ia_cxr) # 0 1 #69 47 17 #======================= # smoking [tricky one] #======================= class(reg_data$smoking) # integer table(reg_data$asthma, reg_data$smoking) # orig # -3 -1 1 2 3 4 #0 15 9 22 2 15 30 #1 4 2 13 0 4 17 # -3 -1 1 2 3 4 #0 14 9 20 2 15 30 #1 5 2 15 0 4 17 # never smoking, 4 and 2 -- > no (0) #1 and 3 ---> yes (1) #!-3 and -1 ---- > NA ################# smoking #1: current daily ===> categ smoker(1) #2: occasional =====> categ no smoker(0) #3: ex-smoker ===> categ smoker(1) #4: never =====> categ no smoker(0) #-1: not recorded =====> categ blank (NA) #-2: n/a specified by the clinician =====> categ blank (NA) #-3: unknown specified by clinician=====> categ blank (NA) table(reg_data$smoking) #-3 -1 1 2 3 4 #19 11 35 2 19 47 # reassign the smoking codes reg_data$smoking[reg_data$smoking == 4 | reg_data$smoking == 2 ] <- 0 reg_data$smoking[reg_data$smoking == 1 | reg_data$smoking == 3 ] <- 1 reg_data$smoking[reg_data$smoking == -1 | reg_data$smoking == -2 | reg_data$smoking == -3 ] <- "" table(reg_data$smoking) # 0 1 #30 49 54 table(reg_data$asthma, reg_data$smoking) # orig # 0 1 #0 24 32 37 #1 6 17 17 # 0 1 #0 23 32 35 #1 7 17 19 ################################################################ #================== # writing output file #================== outfile_name_reg = "reg_data_recoded_with_NA.csv" outfile_reg = paste0(outdir, outfile_name_reg) cat("Writing clinical file for regression:", outfile_reg) #write.csv(reg_data, file = outfile_reg) ################################################################ rm(age_bins, max_age_interval, max_in, min_in, o2_sat_bin, onset_initial_bin, tot_o2, tot_onset2ini, meta_data_cols)