added Header, read_data.R & data_extraction scripts

This commit is contained in:
Tanushree Tunstall 2020-10-24 23:11:44 +01:00
parent 69e8ac0ea8
commit de5b07edc7
3 changed files with 383 additions and 0 deletions

9
Header_TT.R Normal file
View file

@ -0,0 +1,9 @@
#!/usr/bin/Rscript
#install.packages("stringr")
library(stringr)
library(tidyverse)
library(ggpubr)
library(rstatix)
library(Hmisc)
library(qwraps2)

View file

@ -0,0 +1,345 @@
#!/usr/bin/Rscript
getwd()
setwd('~/git/mosaic_2020/')
getwd()
########################################################################
# TASK: Extract relevant columns from mosaic data
# sam
# serum
# npa
########################################################################
#====================
# Input: source data
#====================
source("read_data.R")
# clear unnecessary variables
#rm()
########################################################################
#=========
# sam
#=========
sam_regex = regex(".*_sam[1-3]{1}$", ignore_case = T)
sam_cols_i = str_extract(colnames(all_df), sam_regex) # not boolean
#sam_cols_b = colnames(all_df)%in%sam_cols_i # boolean
sam_cols = colnames(all_df)[colnames(all_df)%in%sam_cols_i]
# this contains log columns + daysamp_samXX: omitting these
sam_regex_log_days = regex("log|day.*_sam[1-3]{1}$", ignore_case = T, perl = T)
sam_cols_to_omit = sam_cols[grepl(sam_regex_log_days, sam_cols)]; sam_cols_to_omit
sam_cols_clean = sam_cols[!sam_cols%in%sam_cols_to_omit]; sam_cols_clean
length(sam_cols_clean)
if( length(sam_cols_clean) == length(sam_cols) - length(sam_cols_to_omit) ){
cat("PASS: clean cols extracted"
, "\nNo. of clean SAM cols to extract:", length(sam_cols_clean))
}else{
cat("FAIL: length mismatch. Aborting further cols extraction"
, "Expected length:", length(sam_cols) - length(sam_cols_to_omit)
, "Got:", length(sam_cols_clean) )
}
sam_cols_to_extract = c(meta_data_cols, sam_cols_clean)
cat("Extracting SAM cols + metadata_cols")
if ( length(sam_cols_to_extract) == length(meta_data_cols) + length(sam_cols_clean) ){
cat("Extracing", length(sam_cols_to_extract), "columns for sam")
sam_df = all_df[, sam_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(sam_cols_clean), "columns"
, "Got:", length(sam_cols_to_extract))
}
colnames_sam_df = colnames(sam_df); colnames_sam_df
#=========
# serum
#=========
serum_regex = regex(".*_serum[1-3]{1}$", ignore_case = T)
serum_cols_i = str_extract(colnames(all_df), serum_regex) # not boolean
#serum_cols_b = colnames(all_df)%in%serum_cols_i # boolean
serum_cols = colnames(all_df)[colnames(all_df)%in%serum_cols_i]
# this contains log columns + dayserump_serumXX: omitting these
serum_regex_log_days = regex("log|day.*_serum[1-3]{1}$", ignore_case = T, perl = T)
serum_cols_to_omit = serum_cols[grepl(serum_regex_log_days, serum_cols)]; serum_cols_to_omit
serum_cols_clean = serum_cols[!serum_cols%in%serum_cols_to_omit]; serum_cols_clean
length(serum_cols_clean)
if( length(serum_cols_clean) == length(serum_cols) - length(serum_cols_to_omit) ){
cat("PASS: clean cols extracted"
, "\nNo. of clean serum cols to extract:", length(serum_cols_clean))
}else{
cat("FAIL: length mismatch. Aborting further cols extraction"
, "Expected length:", length(serum_cols) - length(serum_cols_to_omit)
, "Got:", length(serum_cols_clean) )
}
serum_cols_to_extract = c(meta_data_cols, serum_cols_clean)
cat("Extracting SERUM cols + metadata_cols")
if ( length(serum_cols_to_extract) == length(meta_data_cols) + length(serum_cols_clean) ){
cat("Extracing", length(serum_cols_to_extract), "columns for serum")
serum_df = all_df[, serum_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(serum_cols_clean), "columns"
, "Got:", length(serum_cols_to_extract))
}
colnames_serum_df = colnames(serum_df); colnames_serum_df
#=========
# npa
#=========
npa_regex = regex(".*_npa[1-3]{1}$", ignore_case = T)
npa_cols_i = str_extract(colnames(all_df), npa_regex) # not boolean
#npa_cols_b = colnames(all_df)%in%npa_cols_i # boolean
npa_cols = colnames(all_df)[colnames(all_df)%in%npa_cols_i]
# this contains log columns + daynpap_npaXX: omitting these
npa_regex_log_days = regex("log|day|vl_samptime|ct.*_npa[1-3]{1}$", ignore_case = T, perl = T)
npa_cols_to_omit = npa_cols[grepl(npa_regex_log_days, npa_cols)]; npa_cols_to_omit
npa_cols_clean = npa_cols[!npa_cols%in%npa_cols_to_omit]; npa_cols_clean
length(npa_cols_clean)
if( length(npa_cols_clean) == length(npa_cols) - length(npa_cols_to_omit) ){
cat("PASS: clean cols extracted"
, "\nNo. of clean npa cols to extract:", length(npa_cols_clean))
}else{
cat("FAIL: length mismatch. Aborting further cols extraction"
, "Expected length:", length(npa_cols) - length(npa_cols_to_omit)
, "Got:", length(npa_cols_clean) )
}
npa_cols_to_extract = c(meta_data_cols, npa_cols_clean)
cat("Extracting NPA cols + metadata_cols")
if ( length(npa_cols_to_extract) == length(meta_data_cols) + length(npa_cols_clean) ){
cat("Extracing", length(npa_cols_to_extract), "columns for npa")
npa_df = all_df[, npa_cols_to_extract]
}else{
cat("FAIL: length mismatch"
, "Expeceted to extract:", length(meta_data_cols) + length(npa_cols_clean), "columns"
, "Got:", length(npa_cols_to_extract))
}
colnames_npa_df = colnames(npa_df); colnames_npa_df
colnames_check = as.data.frame(cbind(colnames_sam_df, colnames_serum_df, colnames_npa_df))
tail(colnames_check)
# put NA where a match doesn't exist
# unmatched lengths
#colnames_check[117,1] <- NA
#colnames_check[117,2] <- NA
if ( ncol(sam_df) == ncol(serum_df) ){
start = ncol(sam_df)+1
extra_cols = start:ncol(npa_df)
}
colnames_check_f = colnames_check
tail(colnames_check_f)
for (i in extra_cols){
for (j in 1:2) {
cat("\ni:", i
,"\nj:", j)
colnames_check_f[i,j] <- NA
#colnames_check_f[i, j]< - NA
}
}
tail(colnames_check_f)
# write file?
quick_check = as.data.frame(cbind(metadata_all$mosaic
, metadata_all$adult
, metadata_all$age
, metadata_all$obesity
, metadata_all$obese2))
colnames(quick_check) = c("mosaic", "adult", "age", "obesity", "obese2")
##########################################################################
# LF data
##########################################################################
#==============
# lf data: sam
#==============
str(sam_df)
table(sam_df$obesity); table(sam_df$obese2)
sam_df_adults = sam_df[sam_df$adult == 1,]
cols_to_omit = c("type"
#, "flustat"
#, "obesity"
#, "obese2"
, "height", "height_unit", "weight"
, "weight_unit", "visual_est_bmi", "bmi_rating")
#sam_df_adults_clean = sam_df_adults[!cols_to_omit]
wf_cols = colnames(sam_df_adults)[!colnames(sam_df_adults)%in%cols_to_omit]
sam_df_adults_clean = sam_df_adults[wf_cols]
pivot_cols = meta_data_cols
# subselect pivot_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - length(cols_to_omit)
, "\nGot:",length(pivot_cols) )
quit()
}
expected_rows_sam_lf = nrow(sam_df_adults_clean) * (length(sam_df_adults_clean) - length(pivot_cols)); expected_rows_sam_lf
# using regex:
sam_adults_lf = sam_df_adults_clean %>%
tidyr::pivot_longer(-all_of(pivot_cols)
, names_to = c("mediator", "sample_type", "timepoint")
, names_pattern = "(.*)_(.*)([1-3]{1})"
, values_to = "value")
if (
(nrow(sam_adults_lf) == expected_rows_sam_lf) & (sum(table(is.na(sam_adults_lf$mediator))) == expected_rows_sam_lf)
) {
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
, "\nNo. of rows: ", nrow(sam_adults_lf)
, "\nNo. of cols: ", ncol(sam_adults_lf)))
} else{
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
, "\nExpected no. of rows: ", expected_rows_sam_lf
, "\nGot: ", nrow(sam_adults_lf)
, "\ncheck expected rows calculation!"))
quit()
}
#library(data.table)
#foo = sam_df_adults[1:10]
#long <- melt(setDT(sam_df_adults), id.vars = pivot_cols, variable.name = "levels")
#==============
# lf data: serum
#==============
str(serum_df)
table(serum_df$obesity); table(serum_df$obese2)
serum_df_adults = serum_df[serum_df$adult == 1,]
#serum_df_adults_clean = serum_df_adults[!cols_to_omit]
wf_cols = colnames(serum_df_adults)[!colnames(serum_df_adults)%in%cols_to_omit]
serum_df_adults_clean = serum_df_adults[wf_cols]
pivot_cols = meta_data_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - length(cols_to_omit)
, "\nGot:",length(pivot_cols) )
quit()
}
expected_rows_serum_lf = nrow(serum_df_adults_clean) * (length(serum_df_adults_clean) - length(pivot_cols)); expected_rows_serum_lf
# using regex:
serum_adults_lf = serum_df_adults_clean %>%
tidyr::pivot_longer(-all_of(pivot_cols)
, names_to = c("mediator", "sample_type", "timepoint")
, names_pattern = "(.*)_(.*)([1-3]{1})"
, values_to = "value")
if (
(nrow(serum_adults_lf) == expected_rows_serum_lf) & (sum(table(is.na(serum_adults_lf$mediator))) == expected_rows_serum_lf)
) {
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
, "\nNo. of rows: ", nrow(serum_adults_lf)
, "\nNo. of cols: ", ncol(serum_adults_lf)))
} else{
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
, "\nExpected no. of rows: ", expected_rows_serum_lf
, "\nGot: ", nrow(serum_adults_lf)
, "\ncheck expected rows calculation!"))
quit()
}
#==============
# lf data: npa
#==============
str(npa_df)
table(npa_df$obesity); table(npa_df$obese2)
npa_df_adults = npa_df[npa_df$adult == 1,]
#npa_df_adults_clean = npa_df_adults[!cols_to_omit]
wf_cols = colnames(npa_df_adults)[!colnames(npa_df_adults)%in%cols_to_omit]
npa_df_adults_clean = npa_df_adults[wf_cols]
pivot_cols = meta_data_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - length(cols_to_omit)
, "\nGot:",length(pivot_cols) )
quit()
}
expected_rows_npa_lf = nrow(npa_df_adults_clean) * (length(npa_df_adults_clean) - length(pivot_cols)); expected_rows_npa_lf
# using regex:
npa_adults_lf = npa_df_adults_clean %>%
tidyr::pivot_longer(-all_of(pivot_cols)
, names_to = c("mediator", "sample_type", "timepoint")
, names_pattern = "(.*)_(.*)([1-3]{1})"
, values_to = "value")
if (
(nrow(npa_adults_lf) == expected_rows_npa_lf) & (sum(table(is.na(npa_adults_lf$mediator))) == expected_rows_npa_lf)
) {
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
, "\nNo. of rows: ", nrow(npa_adults_lf)
, "\nNo. of cols: ", ncol(npa_adults_lf)))
} else{
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
, "\nExpected no. of rows: ", expected_rows_npa_lf
, "\nGot: ", nrow(npa_adults_lf)
, "\ncheck expected rows calculation!"))
quit()
}
###############################################################################
# remove unnecessary variables
rm(sam_regex, sam_regex_log_days, sam_cols, sam_cols_clean, sam_cols_i, sam_cols_to_extract, sam_cols_to_omit)
rm(serum_regex, serum_regex_log_days, serum_cols, serum_cols_clean, serum_cols_i, serum_cols_to_extract, serum_cols_to_omit)
rm(npa_regex, npa_regex_log_days, npa_cols, npa_cols_clean, npa_cols_i, npa_cols_to_extract, npa_cols_to_omit)
rm(all_df)
rm(colnames_check)
rm(i, j, expected_cols, start, wf_cols, extra_cols, cols_to_omit)
# rm not_clean dfs
rm(sam_df_adults, serum_df_adults, npa_df_adults)
# rm df containing non-adults
rm(sam_df, serum_df, npa_df)

29
read_data.R Normal file
View file

@ -0,0 +1,29 @@
#!/usr/bin/Rscript
getwd()
setwd("~/git/mosaic_2020/")
getwd()
########################################################################
# TASK: read data
########################################################################
# load libraries, packages and local imports
source("Header_TT.R")
########################################################################
# TODO: turn this to a repo
all_df <- read.csv("/home/pub/Work/MOSAIC/MOSAIC_from_work/MASTER/MOSAIC_2015_MASTER_Aki_stata_20150721/Mosaic_master_file_from_stata.csv"
, fileEncoding='latin1')
#hc_data<-
# meta data columns
meta_data_cols = c("mosaic", "gender", "age", "adult", "flustat", "type"
, "obesity", "obese2", "height", "height_unit", "weight"
, "weight_unit", "visual_est_bmi", "bmi_rating")
# check if these columns to select are present in the data
meta_data_cols%in%colnames(all_df)
all(meta_data_cols%in%colnames(all_df))
metadata_all = all_df[, meta_data_cols]
########################################################################
#
#outdir =
#outdir_plots =
outdir_stats = paste0("~/git/mosaic_2020/output/stats/")