diff --git a/boxplot.R b/boxplot.R index e7d4e99..5d576ea 100644 --- a/boxplot.R +++ b/boxplot.R @@ -78,11 +78,6 @@ stat.test <- stat.test %>% bxp + stat_pvalue_manual( stat.test, label = "p", tip.length = 0 ) - - - - - ################################ lf_test2 = lf[order(lf$mediator),] # 2 meds lf_test2 = lf_test2[1:798,] @@ -98,7 +93,6 @@ stat.test <- lf_test2 %>% stat.test - bxp <- ggboxplot(lf_test2, x = "timepoint", y = "value", color = "obesity", palette = c("#00BFC4", "#F8766D")) + facet_wrap(~mediator, scales = "free_y") @@ -116,45 +110,62 @@ str(lf_comp) p2 = ggplot(lf_test_comp, aes(x = timepoint, y = value, fill = obesity )) + geom_boxplot(width = 0.5) -p2 + stat_compare_means(comparisons = my_comparisons - , method = "wilcox.test" - , paired = F - , label = "p.format") - +p2 ######################################################################## # Output plots as one pdf cat("Output plots will be in:", output_boxplot) -pdf(output_boxplot, width=15, height=12) +pdf(output_boxplot, width = 25, height = 15) -y_value = "value" -my_title1 = "Boxplots" +#stats data +str(lf) +stat.test <- lf %>% + group_by(timepoint, mediator) %>% + wilcox_test(value ~ obesity, paired = F) %>% + #adjust_pvalue(method = "bonferroni") %>% + #add_significance("p.adj") + add_significance("p") +stat.test + +bxp <- ggboxplot(lf, x = "timepoint", y = "value", + color = "obesity", palette = c("#00BFC4", "#F8766D")) + + facet_wrap(~mediator, nrow = 7, ncol = 5, scales = "free_y", shrink = T)+ + scale_y_log10() +bxp + +bxp + stat.test <- stat.test %>% + add_xy_position(x = "timepoint", dodge = 0.8) + +bxp + stat_pvalue_manual(stat.test, label = "p.signif", tip.length = 0) -p1 = ggplot(lf, aes(x = factor(timepoint), y = eval(parse(text=y_value)), fill = factor(obesity) )) + - scale_fill_manual(values=c("#00BFC4", "#F8766D")) + - facet_wrap(~ mediator, nrow = 9, ncol = 4, scales = "free_y") + - geom_boxplot(width = 0.5, outlier.colour = NA) + - #geom_point(position = position_jitterdodge(dodge.width=0.5) - # , aes(colours = factor(obesity))) + - theme(axis.text.x = element_text(size = 15) - , axis.text.y = element_text(size = 15 - , angle = 0 - , hjust = 1 - , vjust = 0) - , axis.title.x = element_text(size = 15) - , axis.title.y = element_text(size = 15) - , plot.title = element_text(size = 20, hjust = 0.5) - , strip.text.x = element_text(size = 15, colour = "black") - , legend.title = element_text(color = "black", size = 10) - , legend.text = element_text(size = 15) - , legend.direction = "vertical") + - labs(title = my_title1 - , x = "" - , y = "Levels")+ - stat_compare_means(comparisons = my_comparisons - , method = "wilcox.test" - , paired = F - , label = "p.format") -#p1 -shift_legend2(p1) +dev.off() + +######output + +# Output plots as one pdf +cat("Output plots will be in:", output_boxplot) +pdf(output_boxplot, width = 20, height = 15) +my_title1 = "Boxplots: serum" + +bxp <- ggboxplot(lf, x = "timepoint", y = "value", + color = "obesity", palette = c("#00BFC4", "#F8766D")) + + facet_wrap(~mediator, nrow = 7, ncol = 5, scales = "free_y", shrink = T)+ + scale_y_log10() + +bxp + theme(axis.text.x = element_text(size = 15) + , axis.text.y = element_text(size = 15 + , angle = 0 + , hjust = 1 + , vjust = 0) + , axis.title.x = element_text(size = 15) + , axis.title.y = element_text(size = 15) + , plot.title = element_text(size = 20, hjust = 0.5) + , strip.text.x = element_text(size = 15, colour = "black") + , legend.title = element_text(color = "black", size = 20) + , legend.text = element_text(size = 15) + , legend.direction = "horizontal") + + labs(title = my_title1 + , x = "" + , y = "Levels (Log10)") +#shift_legend2(bxp) dev.off()