From b94d9a3fdb1cb6b1e1c66dac12197337c4c1c750 Mon Sep 17 00:00:00 2001 From: Tanushree Tunstall Date: Mon, 2 Nov 2020 16:39:37 +0000 Subject: [PATCH] renamed file to reflect stats for linear graphs --- boxplot_stat_all.R => boxplot_stat_linear.R | 0 boxplot_with_stats_test.R | 264 -------------------- 2 files changed, 264 deletions(-) rename boxplot_stat_all.R => boxplot_stat_linear.R (100%) delete mode 100755 boxplot_with_stats_test.R diff --git a/boxplot_stat_all.R b/boxplot_stat_linear.R similarity index 100% rename from boxplot_stat_all.R rename to boxplot_stat_linear.R diff --git a/boxplot_with_stats_test.R b/boxplot_with_stats_test.R deleted file mode 100755 index f513cc2..0000000 --- a/boxplot_with_stats_test.R +++ /dev/null @@ -1,264 +0,0 @@ -#!/usr/bin/Rscript -getwd() -setwd("~/git/mosaic_2020/") -getwd() -############################################################ -# TASK: boxplots at T1 -# FIXME: currently not rendering, problem with NAs for stats? -############################################################ -#============= -# Input -#============= -source("plot_data.R") -####################################################### -med_names = c("eotaxin3", "il12p70", "itac", "il13") -lf_test = lf_fp_npa[lf_fp_npa$mediator%in%med_names,] - -mediators = levels(as.factor(lf_test$mediator)) -mediators = levels(as.factor(lf_fp_npa$mediator)) -lf_test = lf_fp_npa - -plots <- list() - -for (i in mediators) { -single=lf_test[lf_test$mediator==i,] - -max_y = max(single$value, na.rm = T) -cat("Plotting:", i, "max_y:", max_y, "\n") - -p2 = ggplot(single)+ geom_boxplot(aes(x = timepoint - , y = value - , color = obesity - #, palette = c("#00BFC4", "#F8766D") - ))+ - scale_colour_manual(values=c("blue", "red")) + - theme(axis.text.x = element_text(size = 15) - #axis.text.x = element_blank() - , axis.text.y = element_text(size = 15 - , angle = 0 - , hjust = 1 - , vjust = 0) - , axis.title.x = element_blank() - , axis.title.y = element_blank() - , legend.position = "none" - , plot.subtitle = element_text(size = 20, hjust = 0.5) - , plot.title = element_text(size = 20, hjust = 0.5)) + - labs(title = i - #, subtitle = "test2" - ) - -stat_npa2 <- single %>% - group_by(timepoint, mediator) %>% - wilcox_test(value ~ obesity, paired = F) %>% - add_significance("p") -stat_npa2 - -stat_npa2 <- stat_npa2 %>% - add_xy_position(x = "timepoint", dodge = 0.8) - -p2 = p2 + stat_pvalue_manual(stat_npa2 - #, y.position = max_y - , label = "{p} {p.signif}" - , hide.ns=T - , tip.length = 0)+ - scale_y_continuous(expand = expansion(mult = c(0.05, 0.25))) + - -plots[[i]] <- p2 - -} -#============================ -# combine: cowplot_plot_grid -#============================ -#cowplot::plot_grid(plotlist=plots, align = 'hv', ncol=2, nrow=2) -pdf("test.pdf", width = 22, height = 16) -cowplot::plot_grid(plotlist=plots, align = 'hv', ncol=7, nrow=5) -dev.off() -#=========================== -# combine: ggpubr::ggarrange -#=========================== -pdf("test2.pdf", width = 22, height = 16) -npa_plot<- ggpubr::ggarrange(plotlist = plots, align = "hv" - , ncol = 7 - , nrow = 5 - , common.legend = T) -npa_plot -annotate_figure(npa_plot, - top = text_grob("NPA", color = "purple", face = "bold", size = 14), - bottom = text_grob("Mosaic data\nFlu positive adults (n=133)" - , color = "blue", - hjust = 1, x = 0.98, face = "italic", size = 10), - left = text_grob("Levels (pg/ml)", color = "black", rot = 90, size = 18), - #right = "I'm done, thanks :-)!", - #fig.lab = "Figure 1", fig.lab.face = "bold" - ) - - -################################################################## -#======= -# facet -#======= -#-------- -# wilcox stats -#-------- -stat_npa3 <- lf_test %>% - group_by(timepoint, mediator) %>% - wilcox_test(value ~ obesity, paired = F) %>% - add_significance("p") -stat_npa3 -stat_npa3$p_format = round(stat_npa3$p, 3) - -stat_npa3 <- stat_npa3 %>% - add_xy_position(x = "timepoint", dodge = 0.8) -head(stat_npa3) - -#-------- -# summary stats -#-------- -my_summary = lf_test %>% - group_by(timepoint, mediator) %>% - get_summary_stats(value) -my_summary -my_max_df = subset(my_summary - , select = c("mediator", "timepoint" - #, "obesity" - , "max")) - -head(my_max_df); head(stat_npa3) - -#----------------------------- -# merge my_max and stat_npa3 -#----------------------------- -head(my_max_df) -merging_cols = intersect(names(stat_npa3), names(my_max_df)); merging_cols - -stat_npa3_v2 = merge(stat_npa3, my_max_df, by = merging_cols, all.x = T) -stat_npa3_v2$my_y_pos = (stat_npa3_v2$max)*1.2 -stat_npa3_v2$my_y_pos - -head(stat_npa3_v2); head(stat_npa3) - -p3 = ggplot(lf_test)+ geom_boxplot(aes(x = timepoint - , y = value - , color = obesity))+ - scale_colour_manual(values=c("blue", "red")) + - - theme(axis.text.x = element_text(size = 15) - , axis.text.y = element_text(size = 15 - , angle = 0 - , hjust = 1 - , vjust = 0) - , axis.title.x = element_blank() - , axis.title.y = element_blank() - , strip.text.x = element_text(size = 20,margin = margin(0.05,0,0.07,0, "cm")) - , legend.position = "top" - , legend.title = element_text(color = "black", size = 20) - , legend.text = element_text(size = 15) - , plot.subtitle = element_text(size = 20, hjust = 0.5) - , plot.title = element_text(size = 20, hjust = 0.5)) + - labs(title ="NPA")+ - facet_wrap(~mediator, scales = "free", nrow = 2, ncol = 2) -#p3 -p4 = p3 + stat_pvalue_manual(stat_npa3_v2 - , y.position = "my_y_pos" - #, y.position = 50 - , label = "{p_format} {p.signif}" - , hide.ns=T - , tip.length = 0)+ - scale_y_continuous(expand = expansion(mult = c(0.05, 0.25))) - -p4 -#======================================= -p3_build = ggplot_build(p3) -p3_build$layout$panel_scales_y - -get_facet_ymax <- function (x){ - ret <- x$layout$panel_scales_y - y_max = NULL - - for (i in 1:length(ret)){ - print(i) - y_max_i <- max(x$layout$panel_scales_y[[i]]$range$range) - y_max = c(y_max, y_max_i) - } - - return(y_max) -} - -y_max_l = get_facet_ymax(p3_build); y_max_l -#=============================================== -# facet wrap on actual data -pdf("boxplot_stats.pdf", width = 20, height = 15) -#======= -# facet -#======= -#-------- -# wilcox stats -#-------- -stat_npa3 <- lf_fp_npa %>% - group_by(timepoint, mediator) %>% - wilcox_test(value ~ obesity, paired = F) %>% - add_significance("p") -stat_npa3 -stat_npa3$p_format = round(stat_npa3$p, 3) - -stat_npa3 <- stat_npa3 %>% - add_xy_position(x = "timepoint", dodge = 0.8) -head(stat_npa3) - -#-------- -# summary stats -#-------- -my_summary = lf_fp_npa %>% - group_by(timepoint, mediator) %>% - get_summary_stats(value) -my_summary -my_max_df = subset(my_summary - , select = c("mediator", "timepoint", "max")) - -head(my_max_df); head(stat_npa3) - -#----------------------------- -# merge my_max and stat_npa3 -#----------------------------- -head(my_max_df) -merging_cols = intersect(names(stat_npa3), names(my_max_df)); merging_cols - -stat_npa3_v2 = merge(stat_npa3, my_max_df, by = merging_cols, all.x = T) -stat_npa3_v2$my_y_pos = (stat_npa3_v2$max)*1.2 -stat_npa3_v2$my_y_pos - -head(stat_npa3_v2); head(stat_npa3) - - -p3 = ggplot(lf_fp_npa)+ geom_boxplot(aes(x = timepoint - , y = value - , color = obesity))+ - scale_colour_manual(values=c("blue", "red")) + - #scale_y_log10()+ - theme(axis.text.x = element_text(size = 15) - , axis.text.y = element_text(size = 15 - , angle = 0 - , hjust = 1 - , vjust = 0) - , axis.title.x = element_blank() - , axis.title.y = element_blank() - , strip.text.x = element_text(size = 20, margin = margin(2,0,2,0, "cm")) - , legend.position = "top" - , legend.title = element_text(color = "black", size = 20) - , legend.text = element_text(size = 15) - , plot.subtitle = element_text(size = 20, hjust = 0.5) - , plot.title = element_text(size = 20, hjust = 0.5)) + - labs(title ="NPA")+ - facet_wrap(~mediator, scales = "free", nrow = 5, ncol = 7) -#p3 -p4 = p3 + stat_pvalue_manual(stat_npa3_v2 - , y.position = "my_y_pos" - , step.increase = 0.08 - #, y.position = 50 - , label = "{p_format} {p.signif}" - , hide.ns=T - , tip.length = 0) #+ - #scale_y_continuous(expand = expansion(mult = c(0.05, 0.25))) - -p4 -dev.off() \ No newline at end of file