added stats_unpaired.R for sam, serum and npa

This commit is contained in:
Tanushree Tunstall 2020-10-18 17:00:19 +01:00
parent 0dab1d5097
commit 93973ed850
4 changed files with 897 additions and 26 deletions

View file

@ -171,16 +171,22 @@ tail(colnames_check_f)
# LF data
##########################################################################
#=========
#==============
# lf data: sam
#=========
#==============
str(sam_df)
table(sam_df$obesity); table(sam_df$obese2)
sam_df_adults = sam_df[sam_df$adult == 1,]
cols_to_omit = c("adult", "flustat", "type", "obesity"
, "height", "height_unit", "weight", "weight_unit","visual_est_bmi", "bmi_rating")
cols_to_omit = c("flustat", "type", "obesity"
, "height", "height_unit", "weight"
, "weight_unit", "visual_est_bmi", "bmi_rating")
#sam_df_adults_clean = sam_df_adults[!cols_to_omit]
wf_cols = colnames(sam_df_adults)[!colnames(sam_df_adults)%in%cols_to_omit]
sam_df_adults_clean = sam_df_adults[wf_cols]
pivot_cols = meta_data_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
@ -194,44 +200,144 @@ if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
quit()
}
expected_rows_sam_lf = nrow(sam_df_adults) * (length(sam_df_adults) - length(pivot_cols)); expected_rows_sam_lf
expected_rows_sam_lf = nrow(sam_df_adults_clean) * (length(sam_df_adults_clean) - length(pivot_cols)); expected_rows_sam_lf
# using regex:
sam_adults_lf = sam_df_adults %>%
tidyr::pivot_longer(-all_of(pivot_cols), names_to = c("mediator", "sample_type", "timepoint"),
names_pattern = "(.*)_(.*)([1-3]{1})",
values_to = "value")
sam_adults_lf = sam_df_adults_clean %>%
tidyr::pivot_longer(-all_of(pivot_cols)
, names_to = c("mediator", "sample_type", "timepoint")
, names_pattern = "(.*)_(.*)([1-3]{1})"
, values_to = "value")
if ((nrow(sam_lf) == expected_rows_sam_lf) & (sum(table(is.na(sam_adults_lf$mediator))) == expected_rows_sam_lf)) {
if (
(nrow(sam_adults_lf) == expected_rows_sam_lf) & (sum(table(is.na(sam_adults_lf$mediator))) == expected_rows_sam_lf)
) {
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
, "\nNo. of rows: ", nrow(sam_lf)
, "\nNo. of cols: ", ncol(sam_lf)))
, "\nNo. of rows: ", nrow(sam_adults_lf)
, "\nNo. of cols: ", ncol(sam_adults_lf)))
} else{
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
, "\nExpected no. of rows: ", expected_rows_sam_lf
, "\nGot: ", nrow(sam_lf)
, "\nGot: ", nrow(sam_adults_lf)
, "\ncheck expected rows calculation!"))
quit()
}
#library(data.table)
#foo = sam_df_adults[1:10]
#long <- melt(setDT(sam_df_adults), id.vars = pivot_cols, variable.name = "levels")
#==============
# lf data: serum
#==============
str(serum_df)
table(serum_df$obesity); table(serum_df$obese2)
serum_df_adults = serum_df[serum_df$adult == 1,]
cols_to_omit = c("flustat", "type", "obesity"
, "height", "height_unit", "weight", "weight_unit","visual_est_bmi", "bmi_rating")
#serum_df_adults_clean = serum_df_adults[!cols_to_omit]
wf_cols = colnames(serum_df_adults)[!colnames(serum_df_adults)%in%cols_to_omit]
serum_df_adults_clean = serum_df_adults[wf_cols]
pivot_cols = meta_data_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - length(cols_to_omit)
, "\nGot:",length(pivot_cols) )
quit()
}
expected_rows_serum_lf = nrow(serum_df_adults_clean) * (length(serum_df_adults_clean) - length(pivot_cols)); expected_rows_serum_lf
# using regex:
serum_adults_lf = serum_df_adults_clean %>%
tidyr::pivot_longer(-all_of(pivot_cols)
, names_to = c("mediator", "sample_type", "timepoint")
, names_pattern = "(.*)_(.*)([1-3]{1})"
, values_to = "value")
if (
(nrow(serum_adults_lf) == expected_rows_serum_lf) & (sum(table(is.na(serum_adults_lf$mediator))) == expected_rows_serum_lf)
) {
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
, "\nNo. of rows: ", nrow(serum_adults_lf)
, "\nNo. of cols: ", ncol(serum_adults_lf)))
} else{
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
, "\nExpected no. of rows: ", expected_rows_serum_lf
, "\nGot: ", nrow(serum_adults_lf)
, "\ncheck expected rows calculation!"))
quit()
}
#==============
# lf data: npa
#==============
str(npa_df)
table(npa_df$obesity); table(npa_df$obese2)
npa_df_adults = npa_df[npa_df$adult == 1,]
cols_to_omit = c("flustat", "type", "obesity"
, "height", "height_unit", "weight", "weight_unit","visual_est_bmi", "bmi_rating")
#npa_df_adults_clean = npa_df_adults[!cols_to_omit]
wf_cols = colnames(npa_df_adults)[!colnames(npa_df_adults)%in%cols_to_omit]
npa_df_adults_clean = npa_df_adults[wf_cols]
pivot_cols = meta_data_cols
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){
cat("PASS: pivot cols successfully extracted")
}else{
cat("FAIL: length mismatch! pivot cols could not be extracted"
, "\nExpected length:", length(meta_data_cols) - length(cols_to_omit)
, "\nGot:",length(pivot_cols) )
quit()
}
expected_rows_npa_lf = nrow(npa_df_adults_clean) * (length(npa_df_adults_clean) - length(pivot_cols)); expected_rows_npa_lf
# using regex:
npa_adults_lf = npa_df_adults_clean %>%
tidyr::pivot_longer(-all_of(pivot_cols)
, names_to = c("mediator", "sample_type", "timepoint")
, names_pattern = "(.*)_(.*)([1-3]{1})"
, values_to = "value")
if (
(nrow(npa_adults_lf) == expected_rows_npa_lf) & (sum(table(is.na(npa_adults_lf$mediator))) == expected_rows_npa_lf)
) {
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
, "\nNo. of rows: ", nrow(npa_adults_lf)
, "\nNo. of cols: ", ncol(npa_adults_lf)))
} else{
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
, "\nExpected no. of rows: ", expected_rows_npa_lf
, "\nGot: ", nrow(npa_adults_lf)
, "\ncheck expected rows calculation!"))
quit()
}
###############################################################################
# remove unnecessary variables
rm(sam_regex, sam_regex_log_days, sam_cols, sam_cols_b, sam_cols_clean, sam_cols_i, sam_cols_to_extract, sam_cols_to_omit)
rm(serum_regex, serum_regex_log_days, serum_cols, serum_cols_clean, serum_cols_i, serum_cols_to_extract, serum_cols_to_omit)
rm(npa_regex, npa_regex_log_days, npa_cols, npa_cols_clean, npa_cols_i, npa_cols_to_extract, npa_cols_to_omit)
rm(all_df)
rm(colnames_check)
rm(i, j, expected_cols, start, wf_cols, extra_cols, cols_to_omit)

255
stats_unpaired_npa.R Normal file
View file

@ -0,0 +1,255 @@
#!/usr/bin/Rscript
getwd()
setwd('~/git/mosaic_2020/')
getwd()
############################################################
# TASK: summary stats of mediators by time and outcome
############################################################
# load libraries and packages
source("../Header_TT.R")
library(tidyverse)
library(ggpubr)
library(rstatix)
library(Hmisc)
library(qwraps2)
#==========================================================
#datadir = "~/git/covid19/Data"
source("mosaic_bmi_data_extraction_v2.R")
#=============
# Input
#=============
#infile_icu_wf = paste0(datadir,"/icu_covid_wf.csv")
#infile_icu_lf = paste0(datadir,"/icu_covid_lf.csv")
# version 2
#infile_icu_wf = paste0(datadir,"/icu_covid_wf_v3.csv")
#infile_icu_lf = paste0(datadir,"/icu_covid_lf_v3.csv")
#npa_adults_lf
#=============
# Output
#=============
outdir = paste0("~/git/mosaic_2020/version1")
# unpaired analysis
stats_time_unpaired = paste0(outdir, "stats_unpaired_npa.csv")
#%%========================================================
# read file
#wf_data = read.csv(infile_icu_wf , stringsAsFactors = F)
#dim(wf_data)
#lf_data = read.csv(infile_icu_lf , stringsAsFactors = F)
#dim(lf_data)
#%%========================================================
# data assignment for stats
#wf = wf_data
#lf = lf_data
wf = npa_df_adults_clean
lf = npa_adults_lf
table(lf$timepoint)
lf$timepoint = paste0("t", lf$timepoint)
########################################################################
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis with correction
#######################################################################
# with adjustment: fdr and BH are identical
my_adjust_method = "BH"
#==============
# unpaired: t1
#==============
lf_t1 = lf[lf$timepoint == "t1",]
sum(is.na(lf_t1$value))
foo = lf_t1[which(is.na(lf_t1$value)),]
ci = which(is.na(lf_t1$value))
#lf_t1_comp = lf_t1[-ci,]
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
stats_un_t1 = compare_means(value~obese2
, group.by = "mediator"
#, data = lf_t1
, data = lf_t1_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
stats_un_t1$timepoint = "t1"
stats_un_t1$n_obs = length(unique(lf_t1_comp$mosaic)) # CHECK
stats_un_t1 = as.data.frame(stats_un_t1)
class(stats_un_t1)
# check: satisfied!!!!
wilcox.test()
#==============
# unpaired: t2
#==============
lf_t2 = lf[lf$timepoint == "t2",]
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
stats_un_t2 = compare_means(value~obese2
, group.by = "mediator"
#, data = lf_t2
, data = lf_t2_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
stats_un_t2$timepoint = "t2"
stats_un_t2$n_obs = length(unique(lf_t2_comp$mosaic)) # CHECK
stats_un_t2 = as.data.frame(stats_un_t2)
class(stats_un_t2)
# check: satisfied!!!!
wilcox.test()
#==============
# unpaired: t3
#==============
lf_t3 = lf[lf$timepoint == "t3",]
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
stats_un_t3 = compare_means(value~obese2
, group.by = "mediator"
#, data = lf_t3
, data = lf_t3_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
stats_un_t3$timepoint = "t3"
stats_un_t3$n_obs = length(unique(lf_t3_comp$mosaic)) # CHECK
stats_un_t3 = as.data.frame(stats_un_t3)
class(stats_un_t3)
# check: satisfied!!!!
wilcox.test()
#==============
# Rbind these dfs
#==============
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
n_dfs = 3
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
expected_rows = nrow(stats_un_t1) * n_dfs
expected_cols = ncol(stats_un_t1)
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
}else{
cat("FAIL: dfs have different no. of rows and cols"
, "\nCheck harcoded value of n_dfs"
, "\nexpected_rows and cols could not be generated")
quit()
}
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
print("PASS: colnames match. Rbind the 3 dfs...")
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
} else{
cat("FAIL: cannot combined dfs. Colnames don't match!")
quit()
}
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
cat("PASS: combined_df has expected dimension"
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
}else{
cat("FAIL: combined_df dimension mismatch")
quit()
}
#===============================================================
# formatting df
# delete unnecessary column
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
# reflect stats method correctly
combined_unpaired_stats$method
combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
combined_unpaired_stats$method
# replace "." in colnames with "_"
colnames(combined_unpaired_stats)
#names(combined_unpaired_stats) = gsub("\.", "_", names(combined_unpaired_stats)) # weird!!!!
colnames(combined_unpaired_stats) = c("mediator"
, "group1"
, "group2"
, "p"
, "p_adj"
, "p_format"
, "p_signif"
, "method"
, "timepoint"
, "n_obs")
colnames(combined_unpaired_stats)
combined_unpaired_stats$sample_type = "npa"
# add an extra column for padjust_signif
combined_unpaired_stats$padjust_signif = round(combined_unpaired_stats$p_adj, digits = 2)
# add appropriate symbols for padjust_signif
#combined_unpaired_stats = combined_unpaired_stats %>%
# mutate(padjust_signif = case_when(padjust_signif == 0.05 ~ "."
# , padjust_signif <0.05 ~ '*'
# , padjust_signif <=0.01 ~ '**'
# , padjust_signif <=0.001 ~ '***'
# , padjust_signif <=0.0001 ~ '****'
# , TRUE ~ 'ns'))
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
, padjust_signif <=0.0001 ~ '****'
, padjust_signif <=0.001 ~ '***'
, padjust_signif <=0.01 ~ '**'
, padjust_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# reorder columns
print("preparing to reorder columns...")
colnames(combined_unpaired_stats)
my_col_order2 = c("mediator"
, "timepoint"
, "group1"
, "group2"
, "method"
, "p"
, "p_format"
, "p_signif"
, "p_adj"
, "padjust_signif")
if( length(my_col_order2) == ncol(combined_unpaired_stats) && isin(my_col_order2, colnames(combined_unpaired_stats)) ){
print("PASS: Reordering columns...")
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
print("Successful: column reordering")
print("formatted df called:'combined_unpaired_stats_f'")
cat('\nformatted df has the following dimensions\n')
print(dim(combined_unpaired_stats_f ))
} else{
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
, "\nGot:", length(my_col_order2)))
quit()
}
combined_unpaired_stats_f_npa = combined_unpaired_stats_f
#******************
# write output file
#******************
cat("UNpaired stats for groups will be:", stats_time_unpaired)
write.csv(combined_unpaired_stats_f, stats_time_unpaired, row.names = FALSE)

255
stats_unpaired_sam.R Normal file
View file

@ -0,0 +1,255 @@
#!/usr/bin/Rscript
getwd()
setwd('~/git/mosaic_2020/')
getwd()
############################################################
# TASK: summary stats of mediators by time and outcome
############################################################
# load libraries and packages
source("../Header_TT.R")
library(tidyverse)
library(ggpubr)
library(rstatix)
library(Hmisc)
library(qwraps2)
#==========================================================
#datadir = "~/git/covid19/Data"
source("mosaic_bmi_data_extraction_v2.R")
#=============
# Input
#=============
#infile_icu_wf = paste0(datadir,"/icu_covid_wf.csv")
#infile_icu_lf = paste0(datadir,"/icu_covid_lf.csv")
# version 2
#infile_icu_wf = paste0(datadir,"/icu_covid_wf_v3.csv")
#infile_icu_lf = paste0(datadir,"/icu_covid_lf_v3.csv")
#sam_adults_lf
#=============
# Output
#=============
outdir = paste0("~/git/mosaic_2020/version1")
# unpaired analysis
stats_time_unpaired = paste0(outdir, "stats_unpaired_sam.csv")
#%%========================================================
# read file
#wf_data = read.csv(infile_icu_wf , stringsAsFactors = F)
#dim(wf_data)
#lf_data = read.csv(infile_icu_lf , stringsAsFactors = F)
#dim(lf_data)
#%%========================================================
# data assignment for stats
#wf = wf_data
#lf = lf_data
wf = sam_df_adults_clean
lf = sam_adults_lf
table(lf$timepoint)
lf$timepoint = paste0("t", lf$timepoint)
########################################################################
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis with correction
#######################################################################
# with adjustment: fdr and BH are identical
my_adjust_method = "BH"
#==============
# unpaired: t1
#==============
lf_t1 = lf[lf$timepoint == "t1",]
sum(is.na(lf_t1$value))
foo = lf_t1[which(is.na(lf_t1$value)),]
ci = which(is.na(lf_t1$value))
#lf_t1_comp = lf_t1[-ci,]
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
stats_un_t1 = compare_means(value~obese2
, group.by = "mediator"
#, data = lf_t1
, data = lf_t1_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
stats_un_t1$timepoint = "t1"
stats_un_t1$n_obs = length(unique(lf_t1_comp$mosaic)) # CHECK
stats_un_t1 = as.data.frame(stats_un_t1)
class(stats_un_t1)
# check: satisfied!!!!
wilcox.test()
#==============
# unpaired: t2
#==============
lf_t2 = lf[lf$timepoint == "t2",]
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
stats_un_t2 = compare_means(value~obese2
, group.by = "mediator"
#, data = lf_t2
, data = lf_t2_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
stats_un_t2$timepoint = "t2"
stats_un_t2$n_obs = length(unique(lf_t2_comp$mosaic)) # CHECK
stats_un_t2 = as.data.frame(stats_un_t2)
class(stats_un_t2)
# check: satisfied!!!!
wilcox.test()
#==============
# unpaired: t3
#==============
lf_t3 = lf[lf$timepoint == "t3",]
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
stats_un_t3 = compare_means(value~obese2
, group.by = "mediator"
#, data = lf_t3
, data = lf_t3_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
stats_un_t3$timepoint = "t3"
stats_un_t3$n_obs = length(unique(lf_t3_comp$mosaic)) # CHECK
stats_un_t3 = as.data.frame(stats_un_t3)
class(stats_un_t3)
# check: satisfied!!!!
wilcox.test()
#==============
# Rbind these dfs
#==============
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
n_dfs = 3
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
expected_rows = nrow(stats_un_t1) * n_dfs
expected_cols = ncol(stats_un_t1)
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
}else{
cat("FAIL: dfs have different no. of rows and cols"
, "\nCheck harcoded value of n_dfs"
, "\nexpected_rows and cols could not be generated")
quit()
}
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
print("PASS: colnames match. Rbind the 3 dfs...")
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
} else{
cat("FAIL: cannot combined dfs. Colnames don't match!")
quit()
}
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
cat("PASS: combined_df has expected dimension"
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
}else{
cat("FAIL: combined_df dimension mismatch")
quit()
}
#===============================================================
# formatting df
# delete unnecessary column
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
# reflect stats method correctly
combined_unpaired_stats$method
combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
combined_unpaired_stats$method
# replace "." in colnames with "_"
colnames(combined_unpaired_stats)
#names(combined_unpaired_stats) = gsub("\.", "_", names(combined_unpaired_stats)) # weird!!!!
colnames(combined_unpaired_stats) = c("mediator"
, "group1"
, "group2"
, "p"
, "p_adj"
, "p_format"
, "p_signif"
, "method"
, "timepoint"
, "n_obs")
colnames(combined_unpaired_stats)
combined_unpaired_stats$sample_type = "sam"
# add an extra column for padjust_signif
combined_unpaired_stats$padjust_signif = round(combined_unpaired_stats$p_adj, digits = 2)
# add appropriate symbols for padjust_signif
#combined_unpaired_stats = combined_unpaired_stats %>%
# mutate(padjust_signif = case_when(padjust_signif == 0.05 ~ "."
# , padjust_signif <0.05 ~ '*'
# , padjust_signif <=0.01 ~ '**'
# , padjust_signif <=0.001 ~ '***'
# , padjust_signif <=0.0001 ~ '****'
# , TRUE ~ 'ns'))
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
, padjust_signif <=0.0001 ~ '****'
, padjust_signif <=0.001 ~ '***'
, padjust_signif <=0.01 ~ '**'
, padjust_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# reorder columns
print("preparing to reorder columns...")
colnames(combined_unpaired_stats)
my_col_order2 = c("mediator"
, "timepoint"
, "group1"
, "group2"
, "method"
, "p"
, "p_format"
, "p_signif"
, "p_adj"
, "padjust_signif")
if( length(my_col_order2) == ncol(combined_unpaired_stats) && isin(my_col_order2, colnames(combined_unpaired_stats)) ){
print("PASS: Reordering columns...")
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
print("Successful: column reordering")
print("formatted df called:'combined_unpaired_stats_f'")
cat('\nformatted df has the following dimensions\n')
print(dim(combined_unpaired_stats_f ))
} else{
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
, "\nGot:", length(my_col_order2)))
quit()
}
combined_unpaired_stats_f_sam = combined_unpaired_stats_f
#******************
# write output file
#******************
cat("UNpaired stats for groups will be:", stats_time_unpaired)
write.csv(combined_unpaired_stats_f, stats_time_unpaired, row.names = FALSE)

255
stats_unpaired_serum.R Normal file
View file

@ -0,0 +1,255 @@
#!/usr/bin/Rscript
getwd()
setwd('~/git/mosaic_2020/')
getwd()
############################################################
# TASK: summary stats of mediators by time and outcome
############################################################
# load libraries and packages
#source("../Header_TT.R")
library(tidyverse)
library(ggpubr)
library(rstatix)
library(Hmisc)
library(qwraps2)
#==========================================================
#datadir = "~/git/covid19/Data"
source("mosaic_bmi_data_extraction_v2.R")
#=============
# Input
#=============
#infile_icu_wf = paste0(datadir,"/icu_covid_wf.csv")
#infile_icu_lf = paste0(datadir,"/icu_covid_lf.csv")
# version 2
#infile_icu_wf = paste0(datadir,"/icu_covid_wf_v3.csv")
#infile_icu_lf = paste0(datadir,"/icu_covid_lf_v3.csv")
#serum_adults_lf
#=============
# Output
#=============
outdir = paste0("~/git/mosaic_2020/version1")
# unpaired analysis
stats_time_unpaired = paste0(outdir, "stats_unpaired_serum.csv")
#%%========================================================
# read file
#wf_data = read.csv(infile_icu_wf , stringsAsFactors = F)
#dim(wf_data)
#lf_data = read.csv(infile_icu_lf , stringsAsFactors = F)
#dim(lf_data)
#%%========================================================
# data assignment for stats
#wf = wf_data
#lf = lf_data
wf = serum_df_adults_clean
lf = serum_adults_lf
table(lf$timepoint)
lf$timepoint = paste0("t", lf$timepoint)
########################################################################
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis with correction
#######################################################################
# with adjustment: fdr and BH are identical
my_adjust_method = "BH"
#==============
# unpaired: t1
#==============
lf_t1 = lf[lf$timepoint == "t1",]
sum(is.na(lf_t1$value))
foo = lf_t1[which(is.na(lf_t1$value)),]
ci = which(is.na(lf_t1$value))
#lf_t1_comp = lf_t1[-ci,]
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
stats_un_t1 = compare_means(value~obese2
, group.by = "mediator"
#, data = lf_t1
, data = lf_t1_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
stats_un_t1$timepoint = "t1"
stats_un_t1$n_obs = length(unique(lf_t1_comp$mosaic)) # CHECK
stats_un_t1 = as.data.frame(stats_un_t1)
class(stats_un_t1)
# check: satisfied!!!!
#wilcox.test()
#==============
# unpaired: t2
#==============
lf_t2 = lf[lf$timepoint == "t2",]
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
stats_un_t2 = compare_means(value~obese2
, group.by = "mediator"
#, data = lf_t2
, data = lf_t2_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
stats_un_t2$timepoint = "t2"
stats_un_t2$n_obs = length(unique(lf_t2_comp$mosaic)) # CHECK
stats_un_t2 = as.data.frame(stats_un_t2)
class(stats_un_t2)
# check: satisfied!!!!
wilcox.test()
#==============
# unpaired: t3
#==============
lf_t3 = lf[lf$timepoint == "t3",]
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
stats_un_t3 = compare_means(value~obese2
, group.by = "mediator"
#, data = lf_t3
, data = lf_t3_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
stats_un_t3$timepoint = "t3"
stats_un_t3$n_obs = length(unique(lf_t3_comp$mosaic)) # CHECK
stats_un_t3 = as.data.frame(stats_un_t3)
class(stats_un_t3)
# check: satisfied!!!!
wilcox.test()
#==============
# Rbind these dfs
#==============
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
n_dfs = 3
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
expected_rows = nrow(stats_un_t1) * n_dfs
expected_cols = ncol(stats_un_t1)
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
}else{
cat("FAIL: dfs have different no. of rows and cols"
, "\nCheck harcoded value of n_dfs"
, "\nexpected_rows and cols could not be generated")
quit()
}
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
print("PASS: colnames match. Rbind the 3 dfs...")
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
} else{
cat("FAIL: cannot combined dfs. Colnames don't match!")
quit()
}
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
cat("PASS: combined_df has expected dimension"
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
}else{
cat("FAIL: combined_df dimension mismatch")
quit()
}
#===============================================================
# formatting df
# delete unnecessary column
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
# reflect stats method correctly
combined_unpaired_stats$method
combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
combined_unpaired_stats$method
# replace "." in colnames with "_"
colnames(combined_unpaired_stats)
#names(combined_unpaired_stats) = gsub("\.", "_", names(combined_unpaired_stats)) # weird!!!!
colnames(combined_unpaired_stats) = c("mediator"
, "group1"
, "group2"
, "p"
, "p_adj"
, "p_format"
, "p_signif"
, "method"
, "timepoint"
, "n_obs")
colnames(combined_unpaired_stats)
combined_unpaired_stats$sample_type = "serum"
# add an extra column for padjust_signif
combined_unpaired_stats$padjust_signif = round(combined_unpaired_stats$p_adj, digits = 2)
# add appropriate symbols for padjust_signif
#combined_unpaired_stats = combined_unpaired_stats %>%
# mutate(padjust_signif = case_when(padjust_signif == 0.05 ~ "."
# , padjust_signif <0.05 ~ '*'
# , padjust_signif <=0.01 ~ '**'
# , padjust_signif <=0.001 ~ '***'
# , padjust_signif <=0.0001 ~ '****'
# , TRUE ~ 'ns'))
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
, padjust_signif <=0.0001 ~ '****'
, padjust_signif <=0.001 ~ '***'
, padjust_signif <=0.01 ~ '**'
, padjust_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# reorder columns
print("preparing to reorder columns...")
colnames(combined_unpaired_stats)
my_col_order2 = c("mediator"
, "timepoint"
, "group1"
, "group2"
, "method"
, "p"
, "p_format"
, "p_signif"
, "p_adj"
, "padjust_signif")
if( length(my_col_order2) == ncol(combined_unpaired_stats) && isin(my_col_order2, colnames(combined_unpaired_stats)) ){
print("PASS: Reordering columns...")
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
print("Successful: column reordering")
print("formatted df called:'combined_unpaired_stats_f'")
cat('\nformatted df has the following dimensions\n')
print(dim(combined_unpaired_stats_f ))
} else{
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
, "\nGot:", length(my_col_order2)))
quit()
}
combined_unpaired_stats_f_serum = combined_unpaired_stats_f
#******************
# write output file
#******************
cat("UNpaired stats for groups will be:", stats_time_unpaired)
write.csv(combined_unpaired_stats_f, stats_time_unpaired, row.names = FALSE)