added clinical data extraction and logistic regression script
This commit is contained in:
parent
05f1f716f1
commit
4766d6d450
2 changed files with 420 additions and 0 deletions
323
data_extraction_formatting_clinical.R
Normal file
323
data_extraction_formatting_clinical.R
Normal file
|
@ -0,0 +1,323 @@
|
|||
#!/usr/bin/Rscript
|
||||
getwd()
|
||||
setwd('~/git/mosaic_2020/')
|
||||
getwd()
|
||||
########################################################################
|
||||
# TASK: Extract relevant columns from mosaic adults data
|
||||
# npa
|
||||
########################################################################
|
||||
#====================
|
||||
# Input: source data
|
||||
#====================
|
||||
source("read_data.R")
|
||||
|
||||
# extract the flu positive population
|
||||
fp_adults = adult_df[adult_df$flustat == 1,]
|
||||
|
||||
table(adult_df$ia_exac_copd)
|
||||
table(adult_df$ia_exac_copd==1 & adult_df$asthma == 1) # check this is 4
|
||||
|
||||
table(fp_adults$ia_exac_copd==1 & fp_adults$asthma == 1) # check this is 3
|
||||
|
||||
# clear unnecessary variables
|
||||
rm(all_df)
|
||||
rm(adult_df)
|
||||
########################################################################
|
||||
cols_to_extract = c("mosaic"
|
||||
, "ia_exac_copd"
|
||||
, "death"
|
||||
#, "obese2" #inc peaeds, but once you subset data for adults, its the same!
|
||||
, "obesity"
|
||||
, "flustat"
|
||||
, "sfluv"
|
||||
, "h1n1v"
|
||||
, "age"
|
||||
, "gender"
|
||||
, "asthma"
|
||||
, "vl_pfu_ul_npa1"
|
||||
, "los"
|
||||
, "onset2final"
|
||||
, "onsfindeath"
|
||||
, "onset_2_initial"
|
||||
, "o2_sat_admis"
|
||||
, "o2_sat_suppl"
|
||||
, "ethnicity"
|
||||
, "smoking"
|
||||
, "ia_cxr"
|
||||
, "max_resp_score"
|
||||
, "T1_resp_score"
|
||||
, "com_noasthma"
|
||||
, "T2_resp_score"
|
||||
, "inresp_sev"
|
||||
, "steroid")
|
||||
|
||||
#npa_data =
|
||||
|
||||
reg_data = fp_adults[, cols_to_extract]
|
||||
|
||||
# sanity checks
|
||||
table(reg_data$obesity)
|
||||
#table(reg_data$obese2)
|
||||
|
||||
table(reg_data$age>=18)
|
||||
table(reg_data$death)
|
||||
table(reg_data$asthma)
|
||||
table(reg_data$ia_exac_copd)
|
||||
|
||||
########################################################################
|
||||
# Reassign the copd and asthma status and do some checks
|
||||
table(reg_data$ia_exac_copd); sum(is.na(reg_data$ia_exac_copd))
|
||||
|
||||
reg_data$ia_exac_copd[reg_data$ia_exac_copd< 1]<- 0
|
||||
reg_data$ia_exac_copd[is.na(reg_data$ia_exac_copd)] <- 0
|
||||
|
||||
table(reg_data$ia_exac_copd); sum(is.na(reg_data$ia_exac_copd))
|
||||
|
||||
# check copd and asthma status
|
||||
table(reg_data$ia_exac_copd, reg_data$asthma)
|
||||
check_copd_and_asthma_1<- subset(reg_data, ia_exac_copd ==1 & asthma == 1) # check this is 3
|
||||
|
||||
# reassign these 4 so these are treated as non-asthmatics as copd with asthma is not TRUE asthma
|
||||
reg_data$asthma[reg_data$ia_exac_copd == 1 & reg_data$asthma == 1]= 0
|
||||
table(reg_data$ia_exac_copd, reg_data$asthma)
|
||||
|
||||
foo<- subset(reg_data, asthma==1 & ia_exac_copd ==1) # check that its 0
|
||||
|
||||
rm(check_copd_and_asthma_1, foo)
|
||||
#=====================================================================
|
||||
# count the resp scores
|
||||
max_resp_score_table<- table(reg_data$max_resp_score)
|
||||
max_resp_score_table
|
||||
|
||||
T1_resp_score_table<- table(reg_data$T1_resp_score)
|
||||
T1_resp_score_table
|
||||
|
||||
T2_resp_score_table<- table(reg_data$T2_resp_score)
|
||||
T2_resp_score_table
|
||||
|
||||
Inresp_sev<- table(reg_data$inresp_sev)
|
||||
Inresp_sev
|
||||
|
||||
# Reassign the resp score so all 4 are replace by 3
|
||||
reg_data$max_resp_score[reg_data$max_resp_score ==4 ] <- 3
|
||||
revised_resp_score_table<- table(reg_data$max_resp_score)
|
||||
revised_resp_score_table
|
||||
|
||||
reg_data$T1_resp_score[reg_data$T1_resp_score ==4 ] <- 3
|
||||
revised_T1_resp_score_table<- table(reg_data$T1_resp_score)
|
||||
revised_T1_resp_score_table
|
||||
|
||||
reg_data$T2_resp_score[reg_data$T2_resp_score == 4]<- 3
|
||||
revised_T2_resp_score_table<- table(reg_data$T2_resp_score)
|
||||
revised_T2_resp_score_table
|
||||
|
||||
reg_data$inresp_sev[reg_data$inresp_sev == 4]<- 3
|
||||
revised_Inresp_sev<- table(reg_data$inresp_sev)
|
||||
revised_Inresp_sev
|
||||
#=====================================================================
|
||||
# Remove these after checking
|
||||
rm(max_resp_score_table, T1_resp_score_table, T2_resp_score_table, Inresp_sev
|
||||
, revised_resp_score_table, revised_T1_resp_score_table, revised_T2_resp_score_table, revised_Inresp_sev)
|
||||
#=====================================================================
|
||||
|
||||
|
||||
##### age
|
||||
# Create categories of variables
|
||||
reg_data$age = round(reg_data$age, digits = 0)
|
||||
table(reg_data$age)
|
||||
table(reg_data$asthma, reg_data$age)
|
||||
min(reg_data$age); max(reg_data$age)
|
||||
|
||||
library(plyr)
|
||||
max_age_interval = round_any(max(reg_data$age), 10, f = ceiling)
|
||||
max_age_interval
|
||||
|
||||
#age_bins = cut(reg_data$age, c(0,18,30,40,50,60,70,80,90))
|
||||
age_bins = cut(reg_data$age, c(18, 30, 40, 50, 60, 70, max_age_interval))
|
||||
reg_data$age_bins = age_bins
|
||||
dim(reg_data) # 133 27
|
||||
|
||||
#age_bins (to keep consistent with the results table)
|
||||
class(reg_data$age_bins)
|
||||
levels(reg_data$age_bins)
|
||||
#"(18,30]" "(30,40]" "(40,50]" "(50,60]" "(60,70]" "(70,80]"
|
||||
table(reg_data$asthma, reg_data$age_bins)
|
||||
# (18,30] (30,40] (40,50] (50,60] (60,70] (70,80]
|
||||
#0 25 17 23 14 10 1
|
||||
#1 11 8 14 5 3 2
|
||||
|
||||
sum(table(reg_data$asthma, reg_data$age_bins)) == nrow(reg_data)
|
||||
|
||||
#reassign
|
||||
levels(reg_data$age_bins) <- c("(18,30]","(30,40]","(40,50]","(50,80]","(50,80]","(50,80]")
|
||||
table(reg_data$asthma, reg_data$age_bins)
|
||||
table(reg_data$asthma, reg_data$age_bins)
|
||||
#(18,30] (30,40] (40,50] (50,60]
|
||||
#0 25 17 23 25
|
||||
#1 11 8 14 10
|
||||
|
||||
sum(table(reg_data$asthma, reg_data$age_bins)) == nrow(reg_data)
|
||||
|
||||
##### O2 saturation binning
|
||||
reg_data$o2_sat_admis = round(reg_data$o2_sat_admis, digits = 0)
|
||||
table(reg_data$o2_sat_admis)
|
||||
tot_o2 = sum(table(reg_data$o2_sat_admis))- table(reg_data$o2_sat_admis)[["-1"]]
|
||||
tot_o2
|
||||
|
||||
o2_sat_bin = cut(reg_data$o2_sat_admis, c(0,92,100))
|
||||
reg_data$o2_sat_bin = o2_sat_bin
|
||||
table(reg_data$o2_sat_bin)
|
||||
|
||||
sum(table(reg_data$o2_sat_bin)) == tot_o2
|
||||
|
||||
##### Onset to initial binning = "(==not inclusive)
|
||||
max_in = max(reg_data$onset_2_initial); max_in #23
|
||||
min_in = min(reg_data$onset_2_initial) - 1 ; min_in # -6
|
||||
|
||||
tot_onset2ini = sum(table(reg_data$onset_2_initial))
|
||||
tot_onset2ini
|
||||
|
||||
onset_initial_bin = cut(reg_data$onset_2_initial, c(min_in, 4, max_in))
|
||||
reg_data$onset_initial_bin = onset_initial_bin
|
||||
|
||||
sum(table(reg_data$onset_initial_bin)) == tot_onset2ini
|
||||
|
||||
#=======================
|
||||
# seasonal flu: sfluv
|
||||
#=======================
|
||||
# should be a factor
|
||||
if (! is.factor(reg_data$sfluv)){
|
||||
reg_data$sfluv = as.factor(reg_data$sfluv)
|
||||
}
|
||||
class(reg_data$sfluv) #[1] "factor"
|
||||
|
||||
levels(reg_data$sfluv)
|
||||
table(reg_data$asthma, reg_data$sfluv)
|
||||
# reassign
|
||||
levels(reg_data$sfluv) <- c("0", "0", "1")
|
||||
table(reg_data$asthma, reg_data$sfluv)
|
||||
|
||||
#=======================
|
||||
# h1n1v
|
||||
#=======================
|
||||
# should be a factor
|
||||
if (! is.factor(reg_data$h1n1v)){
|
||||
reg_data$h1n1v = as.factor(reg_data$h1n1v)
|
||||
}
|
||||
class(reg_data$h1n1v) #[1] "factor"
|
||||
|
||||
levels(reg_data$h1n1v)
|
||||
table(reg_data$asthma, reg_data$h1n1v)
|
||||
# reassign
|
||||
levels(reg_data$h1n1v) <- c("0", "0", "1")
|
||||
table(reg_data$asthma, reg_data$h1n1v)
|
||||
|
||||
#=======================
|
||||
# ethnicity
|
||||
#=======================
|
||||
class(reg_data$ethnicity) # integer
|
||||
table(reg_data$asthma, reg_data$ethnicity)
|
||||
|
||||
reg_data$ethnicity[reg_data$ethnicity == 4] <- 2
|
||||
table(reg_data$asthma, reg_data$ethnicity)
|
||||
|
||||
#=======================
|
||||
# pneumonia
|
||||
#=======================
|
||||
class(reg_data$ia_cxr) # integer
|
||||
# ia_cxr 2 ---> yes pneumonia (1)
|
||||
# 1 ---> no (0)
|
||||
# ! 1 or 2 -- > "unkown"
|
||||
|
||||
# reassign the pneumonia codes
|
||||
#0: not performed
|
||||
#1: normal
|
||||
#2: findings consistent with pneumonia
|
||||
#3: abnormal
|
||||
#-1: not recorded
|
||||
#-2: n/a specified by the clinician # not in the data...
|
||||
#-3: unknown specified by clinician
|
||||
|
||||
|
||||
table(reg_data$ia_cxr)
|
||||
#-3 -1 0 1 2 3
|
||||
#5 48 13 47 17 3
|
||||
|
||||
# change these first else recoding 0 will be a problem as 0 already exists, mind you -2 categ doesn't exist
|
||||
reg_data$ia_cxr[reg_data$ia_cxr == -3 | reg_data$ia_cxr == -1 | reg_data$ia_cxr == 0 | reg_data$ia_cxr == 3 ] <- ""
|
||||
table(reg_data$ia_cxr)
|
||||
# 1 2
|
||||
#69 47 17
|
||||
|
||||
reg_data$ia_cxr[reg_data$ia_cxr == 1] <- 0
|
||||
reg_data$ia_cxr[reg_data$ia_cxr == 2] <- 1
|
||||
table(reg_data$ia_cxr)
|
||||
# 0 1
|
||||
#69 47 17
|
||||
|
||||
#=======================
|
||||
# smoking [tricky one]
|
||||
#=======================
|
||||
class(reg_data$smoking) # integer
|
||||
table(reg_data$asthma, reg_data$smoking)
|
||||
|
||||
# orig
|
||||
# -3 -1 1 2 3 4
|
||||
#0 15 9 22 2 15 30
|
||||
#1 4 2 13 0 4 17
|
||||
|
||||
# -3 -1 1 2 3 4
|
||||
#0 14 9 20 2 15 30
|
||||
#1 5 2 15 0 4 17
|
||||
|
||||
# never smoking, 4 and 2 -- > no (0)
|
||||
#1 and 3 ---> yes (1)
|
||||
#!-3 and -1 ---- > NA
|
||||
|
||||
################# smoking
|
||||
|
||||
#1: current daily ===> categ smoker(1)
|
||||
#2: occasional =====> categ no smoker(0)
|
||||
#3: ex-smoker ===> categ smoker(1)
|
||||
#4: never =====> categ no smoker(0)
|
||||
#-1: not recorded =====> categ blank (NA)
|
||||
#-2: n/a specified by the clinician =====> categ blank (NA)
|
||||
#-3: unknown specified by clinician=====> categ blank (NA)
|
||||
|
||||
table(reg_data$smoking)
|
||||
#-3 -1 1 2 3 4
|
||||
#19 11 35 2 19 47
|
||||
|
||||
# reassign the smoking codes
|
||||
reg_data$smoking[reg_data$smoking == 4 | reg_data$smoking == 2 ] <- 0
|
||||
reg_data$smoking[reg_data$smoking == 1 | reg_data$smoking == 3 ] <- 1
|
||||
reg_data$smoking[reg_data$smoking == -1 | reg_data$smoking == -2 | reg_data$smoking == -3 ] <- ""
|
||||
|
||||
table(reg_data$smoking)
|
||||
# 0 1
|
||||
#30 49 54
|
||||
|
||||
table(reg_data$asthma, reg_data$smoking)
|
||||
|
||||
# orig
|
||||
# 0 1
|
||||
#0 24 32 37
|
||||
#1 6 17 17
|
||||
|
||||
# 0 1
|
||||
#0 23 32 35
|
||||
#1 7 17 19
|
||||
|
||||
################################################################
|
||||
#==================
|
||||
# writing output file
|
||||
#==================
|
||||
outfile_name_reg = "reg_data_recoded_with_NA.csv"
|
||||
outfile_reg = paste0(outdir, outfile_name_reg)
|
||||
|
||||
cat("Writing clinical file for regression:", outfile_reg)
|
||||
|
||||
#write.csv(reg_data, file = outfile_reg)
|
||||
################################################################
|
||||
|
||||
rm(age_bins, max_age_interval, max_in, min_in, o2_sat_bin, onset_initial_bin, tot_o2, tot_onset2ini, meta_data_cols)
|
97
logistic_regression.R
Executable file
97
logistic_regression.R
Executable file
|
@ -0,0 +1,97 @@
|
|||
#!/usr/bin/Rscript
|
||||
getwd()
|
||||
setwd('~/git/mosaic_2020/')
|
||||
getwd()
|
||||
########################################################################
|
||||
# TASK: Run regression analysis
|
||||
# npa
|
||||
########################################################################
|
||||
#=================================================================================
|
||||
# TO DO:
|
||||
# Simple stats b/w obesity and non-obesity to consider including in reg analysis
|
||||
# Include NPA statistically sign params
|
||||
# Rerun graphs and plots without asthma?
|
||||
#=================================================================================
|
||||
|
||||
#====================
|
||||
# Input: source data
|
||||
#====================
|
||||
source("data_extraction_formatting_clinical.R")
|
||||
|
||||
rm(fp_adults, metadata_all)
|
||||
|
||||
########################################################################
|
||||
my_data = reg_data
|
||||
#########################################################################
|
||||
# check factor of each column
|
||||
lapply(my_data, class)
|
||||
|
||||
character_vars <- lapply(my_data, class) == "character"
|
||||
character_vars
|
||||
table(character_vars)
|
||||
|
||||
factor_vars <- lapply(my_data, class) == "factor"
|
||||
table(factor_vars)
|
||||
|
||||
my_data[, character_vars] <- lapply(my_data[, character_vars], as.factor)
|
||||
factor_vars <- lapply(my_data, class) == "factor"
|
||||
factor_vars
|
||||
table(factor_vars)
|
||||
|
||||
# check again
|
||||
lapply(my_data, class)
|
||||
|
||||
table(my_data$ethnicity)
|
||||
my_data$ethnicity = as.factor(my_data$ethnicity)
|
||||
class(my_data$ethnicity)
|
||||
|
||||
colnames(my_data)
|
||||
reg_param = c("age"
|
||||
, "age_bins"
|
||||
#, "death" # outcome
|
||||
, "asthma"
|
||||
, "obesity"
|
||||
, "gender"
|
||||
, "los"
|
||||
, "o2_sat_admis"
|
||||
#, "logistic_outcome"
|
||||
#, "steroid_ics"
|
||||
, "ethnicity"
|
||||
, "smoking"
|
||||
, "sfluv"
|
||||
, "h1n1v"
|
||||
, "ia_cxr"
|
||||
, "max_resp_score"
|
||||
, "T1_resp_score"
|
||||
, "com_noasthma"
|
||||
, "onset_initial_bin")
|
||||
|
||||
for(i in reg_param) {
|
||||
# print (i)
|
||||
p_form = as.formula(paste("death ~ ", i ,sep = ""))
|
||||
model_reg = glm(p_form , family = binomial, data = my_data)
|
||||
print(summary(model_reg))
|
||||
print(exp(cbind(OR = coef(model_reg), confint(model_reg))))
|
||||
#print (PseudoR2(model_reg))
|
||||
cat("=================================================================================\n")
|
||||
}
|
||||
|
||||
|
||||
full_mod = glm(death ~ asthma +
|
||||
gender +
|
||||
age_bins +
|
||||
los +
|
||||
#ethnicity +
|
||||
onset_initial_bin +
|
||||
o2_sat_bin +
|
||||
com_noasthma +
|
||||
obesity +
|
||||
#ia_cxr +
|
||||
smoking +
|
||||
#sfluv +
|
||||
#h1n1v
|
||||
max_resp_score +
|
||||
T1_resp_score +
|
||||
, family = "binomial", data = my_data)
|
||||
|
||||
summary(full_mod)
|
Loading…
Add table
Add a link
Reference in a new issue