renamed file to reflect data_extraction_mediator
This commit is contained in:
parent
52a2453327
commit
3a380a5be1
11 changed files with 95 additions and 1963 deletions
|
@ -1,166 +0,0 @@
|
||||||
#!/usr/bin/Rscript
|
|
||||||
getwd()
|
|
||||||
setwd("~/git/mosaic_2020/")
|
|
||||||
getwd()
|
|
||||||
############################################################
|
|
||||||
# TASK: boxplots at T1
|
|
||||||
# FIXME: currently not rendering, problem with NAs for stats?
|
|
||||||
############################################################
|
|
||||||
my_samples = "npa_sam_serum"
|
|
||||||
#=============
|
|
||||||
# Input
|
|
||||||
#=============
|
|
||||||
#source("data_extraction_formatting_non_asthmatics.R")
|
|
||||||
source("plot_data_na.R")
|
|
||||||
|
|
||||||
# check: adult variable and age variable discrepancy!
|
|
||||||
metadata_all$mosaic[metadata_all$adult==1 & metadata_all$age<=18]
|
|
||||||
|
|
||||||
#=============
|
|
||||||
# Output:
|
|
||||||
#=============
|
|
||||||
outfile_bp = paste0("boxplots_linear_NA_", my_samples, ".pdf")
|
|
||||||
output_boxplot = paste0(outdir_plots, outfile_bp); output_boxplot
|
|
||||||
|
|
||||||
#===============================
|
|
||||||
# data assignment for plots
|
|
||||||
#================================
|
|
||||||
#-----------
|
|
||||||
# npa
|
|
||||||
#-----------
|
|
||||||
##wf_fp_npa = npa_wf[npa_wf$flustat == 1,]
|
|
||||||
#lf_fp_npa = npa_lf[npa_lf$flustat == 1,]
|
|
||||||
#lf_fp_npa$timepoint = paste0("t", lf_fp_npa$timepoint)
|
|
||||||
#lf_fp_npa$timepoint = as.factor(lf_fp_npa$timepoint)
|
|
||||||
#lf_fp_npa$obesity = as.factor(lf_fp_npa$obesity)
|
|
||||||
|
|
||||||
#table(lf_fp_npa$mediator)
|
|
||||||
#head(lf_fp_npa$value[lf_fp_npa$mediator == "vitd"])
|
|
||||||
#lf_fp_npa = lf_fp_npa[!lf_fp_npa$mediator == "vitd",]
|
|
||||||
|
|
||||||
#-----------
|
|
||||||
# sam
|
|
||||||
#-----------
|
|
||||||
##wf_fp_sam = samm_wf[samm_wf$flustat == 1,]
|
|
||||||
#lf_fp_sam = sam_lf[sam_lf$flustat == 1,]
|
|
||||||
#lf_fp_sam$timepoint = paste0("t", lf_fp_sam$timepoint)
|
|
||||||
#lf_fp_sam$timepoint = as.factor(lf_fp_sam$timepoint)
|
|
||||||
#lf_fp_sam$obesity = as.factor(lf_fp_sam$obesity)
|
|
||||||
|
|
||||||
#table(lf_fp_sam$mediator)
|
|
||||||
#head(lf_fp_sam$value[lf_fp_sam$mediator == "vitd"])
|
|
||||||
#lf_fp_sam = lf_fp_sam[!lf_fp_sam$mediator == "vitd",]
|
|
||||||
|
|
||||||
#-----------
|
|
||||||
# serum
|
|
||||||
#-----------
|
|
||||||
##wf_fp_serum = serum_wf[serum_wf$flustat == 1,]
|
|
||||||
#lf_fp_serum = serum_lf[serum_lf$flustat == 1,]
|
|
||||||
#lf_fp_serum$timepoint = paste0("t", lf_fp_serum$timepoint)
|
|
||||||
#lf_fp_serum$timepoint = as.factor(lf_fp_serum$timepoint)
|
|
||||||
#lf_fp_serum$obesity = as.factor(lf_fp_serum$obesity)
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
cat("Output plots will be in:", output_boxplot)
|
|
||||||
pdf(output_boxplot, width = 20, height = 15)
|
|
||||||
|
|
||||||
#=======================================================================
|
|
||||||
# NPA
|
|
||||||
#=======================================================================
|
|
||||||
if (is.factor(lf_fp_npa$timepoint) && is.factor(lf_fp_npa$timepoint)){
|
|
||||||
cat ("PASS: required groups are factors")
|
|
||||||
}
|
|
||||||
#------------------------------------------
|
|
||||||
title_npa_linear = "NPA (Linear)"
|
|
||||||
#-----------------------------------------
|
|
||||||
bxp_npa_linear <- ggboxplot(lf_fp_npa, x = "timepoint", y = "value",
|
|
||||||
color = "obesity", palette = c("#00BFC4", "#F8766D")) +
|
|
||||||
facet_wrap(~mediator, nrow = 7, ncol = 5, scales = "free_y", shrink = T)+
|
|
||||||
#scale_y_log10() +
|
|
||||||
theme(axis.text.x = element_text(size = 15)
|
|
||||||
, axis.text.y = element_text(size = 15
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0)
|
|
||||||
, axis.title.x = element_text(size = 15)
|
|
||||||
, axis.title.y = element_text(size = 15)
|
|
||||||
, plot.title = element_text(size = 20, hjust = 0.5)
|
|
||||||
, strip.text.x = element_text(size = 15, colour = "black")
|
|
||||||
, legend.title = element_text(color = "black", size = 20)
|
|
||||||
, legend.text = element_text(size = 15)
|
|
||||||
, legend.direction = "horizontal") +
|
|
||||||
labs(title = title_npa_linear
|
|
||||||
, x = ""
|
|
||||||
, y = "Levels")
|
|
||||||
|
|
||||||
bxp_npa_linear
|
|
||||||
|
|
||||||
#=======================================================================
|
|
||||||
# SAM
|
|
||||||
#=======================================================================
|
|
||||||
if (is.factor(lf_fp_sam$timepoint) && is.factor(lf_fp_sam$timepoint)){
|
|
||||||
cat ("PASS: required groups are factors")
|
|
||||||
}
|
|
||||||
|
|
||||||
#------------------------------------------
|
|
||||||
title_sam_linear = "SAM (Linear)"
|
|
||||||
#-----------------------------------------
|
|
||||||
bxp_sam_linear <- ggboxplot(lf_fp_sam, x = "timepoint", y = "value",
|
|
||||||
color = "obesity", palette = c("#00BFC4", "#F8766D")) +
|
|
||||||
facet_wrap(~mediator, nrow = 7, ncol = 5, scales = "free_y", shrink = T)+
|
|
||||||
#scale_y_log10() +
|
|
||||||
theme(axis.text.x = element_text(size = 15)
|
|
||||||
, axis.text.y = element_text(size = 15
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0)
|
|
||||||
, axis.title.x = element_text(size = 15)
|
|
||||||
, axis.title.y = element_text(size = 15)
|
|
||||||
, plot.title = element_text(size = 20, hjust = 0.5)
|
|
||||||
, strip.text.x = element_text(size = 15, colour = "black")
|
|
||||||
, legend.title = element_text(color = "black", size = 20)
|
|
||||||
, legend.text = element_text(size = 15)
|
|
||||||
, legend.direction = "horizontal") +
|
|
||||||
labs(title = title_sam_linear
|
|
||||||
, x = ""
|
|
||||||
, y = "Levels")
|
|
||||||
|
|
||||||
bxp_sam_linear
|
|
||||||
|
|
||||||
#=======================================================================
|
|
||||||
# SERUM
|
|
||||||
#=======================================================================
|
|
||||||
if (is.factor(lf_fp_serum$timepoint) && is.factor(lf_fp_serum$timepoint)){
|
|
||||||
cat ("PASS: required groups are factors")
|
|
||||||
}
|
|
||||||
|
|
||||||
table(lf_fp_serum$mediator)
|
|
||||||
|
|
||||||
#------------------------------------------
|
|
||||||
title_serum_linear = "SERUM (Linear)"
|
|
||||||
#-----------------------------------------
|
|
||||||
bxp_serum_linear <- ggboxplot(lf_fp_serum, x = "timepoint", y = "value",
|
|
||||||
color = "obesity", palette = c("#00BFC4", "#F8766D")) +
|
|
||||||
facet_wrap(~mediator, nrow = 7, ncol = 5, scales = "free_y", shrink = T)+
|
|
||||||
#scale_y_log10() +
|
|
||||||
theme(axis.text.x = element_text(size = 15)
|
|
||||||
, axis.text.y = element_text(size = 15
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0)
|
|
||||||
, axis.title.x = element_text(size = 15)
|
|
||||||
, axis.title.y = element_text(size = 15)
|
|
||||||
, plot.title = element_text(size = 20, hjust = 0.5)
|
|
||||||
, strip.text.x = element_text(size = 15, colour = "black")
|
|
||||||
, legend.title = element_text(color = "black", size = 20)
|
|
||||||
, legend.text = element_text(size = 15)
|
|
||||||
, legend.direction = "horizontal") +
|
|
||||||
labs(title = title_serum_linear
|
|
||||||
, x = ""
|
|
||||||
, y = "Levels")
|
|
||||||
|
|
||||||
bxp_serum_linear
|
|
||||||
|
|
||||||
#==========================================================================
|
|
||||||
dev.off()
|
|
||||||
############################################################################
|
|
170
boxplot_log_na.R
170
boxplot_log_na.R
|
@ -1,170 +0,0 @@
|
||||||
#!/usr/bin/Rscript
|
|
||||||
getwd()
|
|
||||||
setwd("~/git/mosaic_2020/")
|
|
||||||
getwd()
|
|
||||||
############################################################
|
|
||||||
# TASK: boxplots at T1
|
|
||||||
# FIXME: currently not rendering, problem with NAs for stats?
|
|
||||||
############################################################
|
|
||||||
my_samples = "npa_sam_serum"
|
|
||||||
#=============
|
|
||||||
# Input
|
|
||||||
#=============
|
|
||||||
#source("data_extraction_formatting_non_asthmatics.R")
|
|
||||||
source("plot_data_na.R")
|
|
||||||
|
|
||||||
# check: adult variable and age variable discrepancy!
|
|
||||||
metadata_all$mosaic[metadata_all$adult==1 & metadata_all$age<=18]
|
|
||||||
|
|
||||||
#=============
|
|
||||||
# Output:
|
|
||||||
#=============
|
|
||||||
outfile_bp_log = paste0("boxplots_log_NA_", my_samples, ".pdf")
|
|
||||||
output_boxplot_log = paste0(outdir_plots, outfile_bp_log); output_boxplot_log
|
|
||||||
|
|
||||||
#===============================
|
|
||||||
# data assignment for plots
|
|
||||||
#================================
|
|
||||||
#-----------
|
|
||||||
# npa
|
|
||||||
#-----------
|
|
||||||
#wf_fp_npa = npa_wf[npa_wf$flustat == 1,]
|
|
||||||
lf_fp_npa = npa_lf[npa_lf$flustat == 1,]
|
|
||||||
lf_fp_npa$timepoint = paste0("t", lf_fp_npa$timepoint)
|
|
||||||
lf_fp_npa$timepoint = as.factor(lf_fp_npa$timepoint)
|
|
||||||
lf_fp_npa$obesity = as.factor(lf_fp_npa$obesity)
|
|
||||||
|
|
||||||
table(lf_fp_npa$mediator)
|
|
||||||
head(lf_fp_npa$value[lf_fp_npa$mediator == "vitd"])
|
|
||||||
lf_fp_npa = lf_fp_npa[!lf_fp_npa$mediator == "vitd",]
|
|
||||||
|
|
||||||
#-----------
|
|
||||||
# sam
|
|
||||||
#-----------
|
|
||||||
#wf_fp_sam = samm_wf[samm_wf$flustat == 1,]
|
|
||||||
lf_fp_sam = sam_lf[sam_lf$flustat == 1,]
|
|
||||||
lf_fp_sam$timepoint = paste0("t", lf_fp_sam$timepoint)
|
|
||||||
lf_fp_sam$timepoint = as.factor(lf_fp_sam$timepoint)
|
|
||||||
lf_fp_sam$obesity = as.factor(lf_fp_sam$obesity)
|
|
||||||
|
|
||||||
table(lf_fp_sam$mediator)
|
|
||||||
head(lf_fp_sam$value[lf_fp_sam$mediator == "vitd"])
|
|
||||||
lf_fp_sam = lf_fp_sam[!lf_fp_sam$mediator == "vitd",]
|
|
||||||
|
|
||||||
#-----------
|
|
||||||
# serum
|
|
||||||
#-----------
|
|
||||||
#wf_fp_serum = serum_wf[serum_wf$flustat == 1,]
|
|
||||||
lf_fp_serum = serum_lf[serum_lf$flustat == 1,]
|
|
||||||
lf_fp_serum$timepoint = paste0("t", lf_fp_serum$timepoint)
|
|
||||||
lf_fp_serum$timepoint = as.factor(lf_fp_serum$timepoint)
|
|
||||||
lf_fp_serum$obesity = as.factor(lf_fp_serum$obesity)
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
cat("Output plots will be in:", output_boxplot_log)
|
|
||||||
pdf(output_boxplot_log, width = 20, height = 15)
|
|
||||||
|
|
||||||
#=======================================================================
|
|
||||||
# NPA
|
|
||||||
#=======================================================================
|
|
||||||
if (is.factor(lf_fp_npa$timepoint) && is.factor(lf_fp_npa$timepoint)){
|
|
||||||
cat ("PASS: required groups are factors")
|
|
||||||
}
|
|
||||||
|
|
||||||
#------------------------------------
|
|
||||||
title_npa_log = "NPA (Log)"
|
|
||||||
#-----------------------------------
|
|
||||||
|
|
||||||
bxp_npa_log <- ggboxplot(lf_fp_npa, x = "timepoint", y = "value",
|
|
||||||
color = "obesity", palette = c("#00BFC4", "#F8766D")) +
|
|
||||||
facet_wrap(~mediator, nrow = 7, ncol = 5, scales = "free_y", shrink = F)+
|
|
||||||
scale_y_log10() +
|
|
||||||
theme(axis.text.x = element_text(size = 15)
|
|
||||||
, axis.text.y = element_text(size = 15
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0)
|
|
||||||
, axis.title.x = element_text(size = 15)
|
|
||||||
, axis.title.y = element_text(size = 15)
|
|
||||||
, plot.title = element_text(size = 20, hjust = 0.5)
|
|
||||||
, strip.text.x = element_text(size = 15, colour = "black")
|
|
||||||
, legend.title = element_text(color = "black", size = 20)
|
|
||||||
, legend.text = element_text(size = 15)
|
|
||||||
, legend.direction = "horizontal") +
|
|
||||||
labs(title = title_npa_log
|
|
||||||
, x = ""
|
|
||||||
, y = "Levels (Log)")
|
|
||||||
|
|
||||||
bxp_npa_log
|
|
||||||
|
|
||||||
#=======================================================================
|
|
||||||
# SAM
|
|
||||||
#=======================================================================
|
|
||||||
if (is.factor(lf_fp_sam$timepoint) && is.factor(lf_fp_sam$timepoint)){
|
|
||||||
cat ("PASS: required groups are factors")
|
|
||||||
}
|
|
||||||
|
|
||||||
#------------------------------------
|
|
||||||
title_sam_log = "SAM (Log)"
|
|
||||||
#-----------------------------------
|
|
||||||
|
|
||||||
bxp_sam_log <- ggboxplot(lf_fp_sam, x = "timepoint", y = "value",
|
|
||||||
color = "obesity", palette = c("#00BFC4", "#F8766D")) +
|
|
||||||
facet_wrap(~mediator, nrow = 7, ncol = 5, scales = "free_y", shrink = T)+
|
|
||||||
scale_y_log10() +
|
|
||||||
theme(axis.text.x = element_text(size = 15)
|
|
||||||
, axis.text.y = element_text(size = 15
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0)
|
|
||||||
, axis.title.x = element_text(size = 15)
|
|
||||||
, axis.title.y = element_text(size = 15)
|
|
||||||
, plot.title = element_text(size = 20, hjust = 0.5)
|
|
||||||
, strip.text.x = element_text(size = 15, colour = "black")
|
|
||||||
, legend.title = element_text(color = "black", size = 20)
|
|
||||||
, legend.text = element_text(size = 15)
|
|
||||||
, legend.direction = "horizontal") +
|
|
||||||
labs(title = title_sam_log
|
|
||||||
, x = ""
|
|
||||||
, y = "Levels (Log)")
|
|
||||||
|
|
||||||
bxp_sam_log
|
|
||||||
|
|
||||||
#=======================================================================
|
|
||||||
# SERUM
|
|
||||||
#=======================================================================
|
|
||||||
if (is.factor(lf_fp_serum$timepoint) && is.factor(lf_fp_serum$timepoint)){
|
|
||||||
cat ("PASS: required groups are factors")
|
|
||||||
}
|
|
||||||
|
|
||||||
table(lf_fp_serum$mediator)
|
|
||||||
|
|
||||||
#------------------------------------
|
|
||||||
title_serum_log = "SERUM (Log)"
|
|
||||||
#-----------------------------------
|
|
||||||
|
|
||||||
bxp_serum_log <- ggboxplot(lf_fp_serum, x = "timepoint", y = "value",
|
|
||||||
color = "obesity", palette = c("#00BFC4", "#F8766D")) +
|
|
||||||
facet_wrap(~mediator, nrow = 7, ncol = 5, scales = "free_y", shrink = T)+
|
|
||||||
scale_y_log10() +
|
|
||||||
theme(axis.text.x = element_text(size = 15)
|
|
||||||
, axis.text.y = element_text(size = 15
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1
|
|
||||||
, vjust = 0)
|
|
||||||
, axis.title.x = element_text(size = 15)
|
|
||||||
, axis.title.y = element_text(size = 15)
|
|
||||||
, plot.title = element_text(size = 20, hjust = 0.5)
|
|
||||||
, strip.text.x = element_text(size = 15, colour = "black")
|
|
||||||
, legend.title = element_text(color = "black", size = 20)
|
|
||||||
, legend.text = element_text(size = 15)
|
|
||||||
, legend.direction = "horizontal") +
|
|
||||||
labs(title = title_serum_log
|
|
||||||
, x = ""
|
|
||||||
, y = "Levels (Log)")
|
|
||||||
|
|
||||||
bxp_serum_log
|
|
||||||
|
|
||||||
#==========================================================================
|
|
||||||
dev.off()
|
|
||||||
############################################################################
|
|
|
@ -7,17 +7,27 @@ getwd()
|
||||||
# clinical and sig meds
|
# clinical and sig meds
|
||||||
########################################################################
|
########################################################################
|
||||||
|
|
||||||
|
|
||||||
########################################################################
|
########################################################################
|
||||||
clinical_cols_data = c("mosaic"
|
# meta data columns
|
||||||
, "ia_exac_copd"
|
meta_data_cols = c("mosaic"
|
||||||
, "death"
|
, "gender"
|
||||||
#, "obese2" #inc peaeds, but once you subset data for adults, its the same!
|
, "age"
|
||||||
, "obesity"
|
, "adult"
|
||||||
, "flustat"
|
, "flustat"
|
||||||
|
, "type"
|
||||||
|
#, "obese2" #inc peaeds, but once you subset data for adults, its the same!
|
||||||
|
#, "height", "height_unit"
|
||||||
|
#, "weight", "weight_unit"
|
||||||
|
#, "ia_height_ftin", "ia_height_m", "ia_weight"
|
||||||
|
#, "visual_est_bmi", "bmi_rating"
|
||||||
|
, "obesity")
|
||||||
|
|
||||||
|
clinical_cols = c("death"
|
||||||
, "sfluv"
|
, "sfluv"
|
||||||
, "h1n1v"
|
, "h1n1v"
|
||||||
, "age"
|
, "ia_exac_copd"
|
||||||
, "gender"
|
, "onset_2_t1"
|
||||||
, "asthma"
|
, "asthma"
|
||||||
, "vl_pfu_ul_npa1"
|
, "vl_pfu_ul_npa1"
|
||||||
, "los"
|
, "los"
|
||||||
|
@ -36,13 +46,13 @@ clinical_cols_data = c("mosaic"
|
||||||
, "inresp_sev"
|
, "inresp_sev"
|
||||||
, "steroid")
|
, "steroid")
|
||||||
|
|
||||||
clinical_cols_added = c("age_bins"
|
#clinical_cols_added = c("age_bins"
|
||||||
, "o2_sat_bin"
|
# , "o2_sat_bin"
|
||||||
, "onset_initial_bin"
|
# , "onset_initial_bin"
|
||||||
, "steroid_ics"
|
# , "steroid_ics"
|
||||||
, "t1_resp_recoded" )
|
# , "t1_resp_recoded")
|
||||||
|
|
||||||
clinical_cols = c(clinical_cols_data, clinical_cols_added)
|
meta_clinical_cols = c(meta_data_cols, clinical_cols)
|
||||||
|
|
||||||
sig_npa_cols = c("eotaxin_npa1"
|
sig_npa_cols = c("eotaxin_npa1"
|
||||||
, "eotaxin3_npa1"
|
, "eotaxin3_npa1"
|
||||||
|
@ -83,15 +93,15 @@ sig_npa_cols = c("eotaxin_npa1"
|
||||||
, "tnfr2_npa2"
|
, "tnfr2_npa2"
|
||||||
, "tnfr2_npa3")
|
, "tnfr2_npa3")
|
||||||
|
|
||||||
cols_to_extract = c(clinical_cols, sig_npa_cols)
|
#cols_to_extract = c(clinical_cols, sig_npa_cols, clinical_cols_added)
|
||||||
|
|
||||||
if ( length(cols_to_extract) == length(clinical_cols) + length(sig_npa_cols) ){
|
#if ( length(cols_to_extract) == length(clinical_cols) + length(sig_npa_cols) + length(clinical_cols_added) ){
|
||||||
cat("PASS: length match"
|
# cat("PASS: length match"
|
||||||
, "\nTotal no. of cols to extract for regression:", length(cols_to_extract)
|
# , "\nTotal no. of cols to extract for regression:", length(cols_to_extract)
|
||||||
, "\nNo. of clinical cols:", length(clinical_cols)
|
# , "\nNo. of clinical cols:", length(clinical_cols)
|
||||||
, "\nNo. of sig npa cols: ", length(sig_npa_cols))
|
# , "\nNo. of sig npa cols: ", length(sig_npa_cols))
|
||||||
}else{
|
#}else{
|
||||||
cat("FAIL: length mismatch"
|
# cat("FAIL: length mismatch"
|
||||||
, "\nAborting!")
|
# , "\nAborting!")
|
||||||
quit()
|
# quit()
|
||||||
}
|
#}
|
||||||
|
|
|
@ -33,9 +33,9 @@ table(fp_adults$ia_exac_copd==1 & fp_adults$asthma == 1)
|
||||||
########################################################################
|
########################################################################
|
||||||
# Clinical_data extraction
|
# Clinical_data extraction
|
||||||
########################################################################
|
########################################################################
|
||||||
#cat("\nExtracting:", length(clinical_cols), "cols from fp_adults")
|
#cat("\nExtracting:", length(meta_clinical_cols), "cols from fp_adults")
|
||||||
|
|
||||||
#clinical_df = fp_adults[, clinical_cols]
|
#clinical_df = fp_adults[, meta_clinical_cols]
|
||||||
|
|
||||||
# sanity checks
|
# sanity checks
|
||||||
#if ( sum(table(clinical_df$obesity)) & sum(table(clinical_df$age>=18)) & sum(table(clinical_df$death)) & sum(table(clinical_df$asthma)) == nrow(clinical_df) ){
|
#if ( sum(table(clinical_df$obesity)) & sum(table(clinical_df$age>=18)) & sum(table(clinical_df$death)) & sum(table(clinical_df$asthma)) == nrow(clinical_df) ){
|
||||||
|
@ -56,24 +56,8 @@ table(fp_adults$ia_exac_copd==1 & fp_adults$asthma == 1)
|
||||||
if ( table(fp_adults$ia_exac_copd, fp_adults$asthma) [[2,2]] == 0){
|
if ( table(fp_adults$ia_exac_copd, fp_adults$asthma) [[2,2]] == 0){
|
||||||
cat("PASS: asthma and copd do not conflict")
|
cat("PASS: asthma and copd do not conflict")
|
||||||
}else{
|
}else{
|
||||||
cat("Conflict detected in asthm and copd filed, attempting to resolve...")
|
cat("Conflict detected in asthma and copd filed. Check script: read_data.R")
|
||||||
# Reassign the copd and asthma status and do some checks
|
quit()
|
||||||
table(fp_adults$ia_exac_copd); sum(is.na(fp_adults$ia_exac_copd))
|
|
||||||
fp_adults$ia_exac_copd[fp_adults$ia_exac_copd< 1]<- 0
|
|
||||||
fp_adults$ia_exac_copd[is.na(fp_adults$ia_exac_copd)] <- 0
|
|
||||||
table(fp_adults$ia_exac_copd); sum(is.na(fp_adults$ia_exac_copd))
|
|
||||||
|
|
||||||
# check copd and asthma status
|
|
||||||
table(fp_adults$ia_exac_copd, fp_adults$asthma)
|
|
||||||
check_copd_and_asthma_1<- subset(fp_adults, ia_exac_copd ==1 & asthma == 1) # check this is 3
|
|
||||||
|
|
||||||
# reassign these 3 so these are treated as non-asthmatics as copd with asthma is NOT TRUE asthma
|
|
||||||
fp_adults$asthma[fp_adults$ia_exac_copd == 1 & fp_adults$asthma == 1]= 0
|
|
||||||
table(fp_adults$ia_exac_copd, fp_adults$asthma)
|
|
||||||
foo<- subset(fp_adults, asthma==1 & ia_exac_copd ==1) # check that its 0
|
|
||||||
rm(check_copd_and_asthma_1, foo)
|
|
||||||
cat("Check status again...")
|
|
||||||
|
|
||||||
}
|
}
|
||||||
#=====================================================================
|
#=====================================================================
|
||||||
#=================================
|
#=================================
|
||||||
|
@ -391,10 +375,37 @@ table(fp_adults_ics$steroid_ics)
|
||||||
#str(fp_adults_ics)
|
#str(fp_adults_ics)
|
||||||
|
|
||||||
#=========================
|
#=========================
|
||||||
# remove cols
|
# clinical_df only
|
||||||
#=========================
|
#=========================
|
||||||
|
clinical_df_ics = fp_adults_ics[, c(meta_clinical_cols, "steroid_ics")]
|
||||||
|
|
||||||
fp_adults_ics = subset(fp_adults_ics, select = -c(onset_2_initial))
|
#=========================
|
||||||
|
# FIXME: decide! remove cols
|
||||||
|
#=========================
|
||||||
|
#fp_adults_ics = subset(fp_adults_ics, select = -c(onset_2_initial))
|
||||||
|
|
||||||
|
#=========================
|
||||||
|
# fp_adults_ics: without asthma
|
||||||
|
#=========================
|
||||||
|
#fp_adults_ics_na = fp_adults_ics[fp_adults_ics$asthma == 0,]
|
||||||
|
|
||||||
|
#=========================
|
||||||
|
# fp_adults_ics: without severity 3
|
||||||
|
#=========================
|
||||||
|
#table(fp_adults_ics$T1_resp_score)
|
||||||
|
#table(fp_adults_ics$T1_resp_score!=3)#
|
||||||
|
|
||||||
|
#fp_adults_ics_ns = fp_adults_ics[fp_adults_ics$T1_resp_score!=3,]
|
||||||
|
#table(fp_adults_ics_ns$T1_resp_score)
|
||||||
|
|
||||||
|
#=========================
|
||||||
|
# cols_added
|
||||||
|
#=========================
|
||||||
|
clinical_cols_added = c("age_bins"
|
||||||
|
, "o2_sat_bin"
|
||||||
|
, "onset_initial_bin"
|
||||||
|
, "steroid_ics"
|
||||||
|
, "t1_resp_recoded")
|
||||||
|
|
||||||
#======================
|
#======================
|
||||||
# writing output file
|
# writing output file
|
||||||
|
@ -405,20 +416,13 @@ outfile_reg = paste0(outdir, outfile_name_reg)
|
||||||
cat("\nWriting clinical file for regression:", outfile_reg)
|
cat("\nWriting clinical file for regression:", outfile_reg)
|
||||||
#write.csv(fp_adults_ics, file = outfile_reg)
|
#write.csv(fp_adults_ics, file = outfile_reg)
|
||||||
|
|
||||||
#=========================
|
|
||||||
# fp_adults_ics: without asthma
|
|
||||||
#=========================
|
|
||||||
fp_adults_ics_na = fp_adults_ics[fp_adults_ics$asthma == 0,]
|
|
||||||
|
|
||||||
|
|
||||||
#=========================
|
|
||||||
# clinical_df only
|
|
||||||
#=========================
|
|
||||||
clinical_df_ics = fp_adults[, clinical_cols]
|
|
||||||
################################################################
|
################################################################
|
||||||
rm(age_bins, max_age_interval, max_in, min_in
|
rm(age_bins, max_age_interval, max_in, min_in
|
||||||
|
, min_age, min_age_interval
|
||||||
, o2_sat_bin, onset_initial_bin, tot_o2
|
, o2_sat_bin, onset_initial_bin, tot_o2
|
||||||
, n_text_code, n1, n2, tot_onset2ini, infile_ics
|
, n_text_code, n1, n2, tot_onset2ini, infile_ics
|
||||||
, tot_onset2ini, meta_data_cols
|
|
||||||
, fp_adults, clinical_ics)
|
, fp_adults, clinical_ics)
|
||||||
################################################################
|
################################################################
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,357 +0,0 @@
|
||||||
#!/usr/bin/Rscript
|
|
||||||
getwd()
|
|
||||||
setwd('~/git/mosaic_2020/')
|
|
||||||
getwd()
|
|
||||||
########################################################################
|
|
||||||
# TASK: Extract relevant columns from mosaic adults data
|
|
||||||
# sam
|
|
||||||
# serum
|
|
||||||
# npa
|
|
||||||
########################################################################
|
|
||||||
#====================
|
|
||||||
# Input: source data
|
|
||||||
#====================
|
|
||||||
source("read_data.R")
|
|
||||||
|
|
||||||
#============================
|
|
||||||
# Data to use: Important step
|
|
||||||
#============================
|
|
||||||
# select df to use
|
|
||||||
my_data = fp_adults_na
|
|
||||||
|
|
||||||
# clear unnecessary variables
|
|
||||||
rm(all_df, adult_df, fp_adults)
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
if ( sum(table(my_data$asthma)) && sum(table(my_data$asthma, my_data$ia_exac_copd)) && sum(table(my_data$obesity)) == nrow(my_data) ){
|
|
||||||
cat("PASS: fp adults WITHOUT asthma extracted sucessfully")
|
|
||||||
}else{
|
|
||||||
cat("FAIL: numbers mismatch. Please check")
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# sam
|
|
||||||
#=========
|
|
||||||
sam_regex = regex(".*_sam[1-3]{1}$", ignore_case = T)
|
|
||||||
sam_cols_i = str_extract(colnames(my_data), sam_regex) # not boolean
|
|
||||||
#sam_cols_b = colnames(my_data)%in%sam_cols_i # boolean
|
|
||||||
|
|
||||||
sam_cols = colnames(my_data)[colnames(my_data)%in%sam_cols_i]
|
|
||||||
sam_cols
|
|
||||||
|
|
||||||
# this contains log columns + daysamp_samXX: omitting these
|
|
||||||
sam_regex_log_days = regex("log|day.*_sam[1-3]{1}$", ignore_case = T, perl = T)
|
|
||||||
sam_cols_to_omit = sam_cols[grepl(sam_regex_log_days, sam_cols)]; sam_cols_to_omit
|
|
||||||
sam_cols_to_omit
|
|
||||||
|
|
||||||
sam_cols_clean = sam_cols[!sam_cols%in%sam_cols_to_omit]; sam_cols_clean
|
|
||||||
length(sam_cols_clean)
|
|
||||||
|
|
||||||
if( length(sam_cols_clean) == length(sam_cols) - length(sam_cols_to_omit) ){
|
|
||||||
cat("PASS: clean cols extracted"
|
|
||||||
, "\nNo. of clean SAM cols to extract:", length(sam_cols_clean))
|
|
||||||
}else{
|
|
||||||
cat("FAIL: length mismatch. Aborting further cols extraction"
|
|
||||||
, "Expected length:", length(sam_cols) - length(sam_cols_to_omit)
|
|
||||||
, "Got:", length(sam_cols_clean) )
|
|
||||||
}
|
|
||||||
|
|
||||||
sam_cols_to_extract = c(meta_data_cols, sam_cols_clean)
|
|
||||||
|
|
||||||
cat("Extracting SAM cols + metadata_cols")
|
|
||||||
|
|
||||||
if ( length(sam_cols_to_extract) == length(meta_data_cols) + length(sam_cols_clean) ){
|
|
||||||
cat("Extracing", length(sam_cols_to_extract), "columns for sam")
|
|
||||||
sam_df = my_data[, sam_cols_to_extract]
|
|
||||||
}else{
|
|
||||||
cat("FAIL: length mismatch"
|
|
||||||
, "Expeceted to extract:", length(meta_data_cols) + length(sam_cols_clean), "columns"
|
|
||||||
, "Got:", length(sam_cols_to_extract))
|
|
||||||
}
|
|
||||||
|
|
||||||
colnames_sam_df = colnames(sam_df); colnames_sam_df
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# serum
|
|
||||||
#=========
|
|
||||||
serum_regex = regex(".*_serum[1-3]{1}$", ignore_case = T)
|
|
||||||
serum_cols_i = str_extract(colnames(my_data), serum_regex) # not boolean
|
|
||||||
#serum_cols_b = colnames(my_data)%in%serum_cols_i # boolean
|
|
||||||
|
|
||||||
serum_cols = colnames(my_data)[colnames(my_data)%in%serum_cols_i]
|
|
||||||
|
|
||||||
# this contains log columns + dayserump_serumXX: omitting these
|
|
||||||
serum_regex_log_days = regex("log|day.*_serum[1-3]{1}$", ignore_case = T, perl = T)
|
|
||||||
serum_cols_to_omit = serum_cols[grepl(serum_regex_log_days, serum_cols)]; serum_cols_to_omit
|
|
||||||
|
|
||||||
serum_cols_clean = serum_cols[!serum_cols%in%serum_cols_to_omit]; serum_cols_clean
|
|
||||||
length(serum_cols_clean)
|
|
||||||
|
|
||||||
if( length(serum_cols_clean) == length(serum_cols) - length(serum_cols_to_omit) ){
|
|
||||||
cat("PASS: clean cols extracted"
|
|
||||||
, "\nNo. of clean serum cols to extract:", length(serum_cols_clean))
|
|
||||||
}else{
|
|
||||||
cat("FAIL: length mismatch. Aborting further cols extraction"
|
|
||||||
, "Expected length:", length(serum_cols) - length(serum_cols_to_omit)
|
|
||||||
, "Got:", length(serum_cols_clean) )
|
|
||||||
}
|
|
||||||
|
|
||||||
serum_cols_to_extract = c(meta_data_cols, serum_cols_clean)
|
|
||||||
|
|
||||||
cat("Extracting SERUM cols + metadata_cols")
|
|
||||||
|
|
||||||
if ( length(serum_cols_to_extract) == length(meta_data_cols) + length(serum_cols_clean) ){
|
|
||||||
cat("Extracing", length(serum_cols_to_extract), "columns for serum")
|
|
||||||
serum_df = my_data[, serum_cols_to_extract]
|
|
||||||
}else{
|
|
||||||
cat("FAIL: length mismatch"
|
|
||||||
, "Expeceted to extract:", length(meta_data_cols) + length(serum_cols_clean), "columns"
|
|
||||||
, "Got:", length(serum_cols_to_extract))
|
|
||||||
}
|
|
||||||
|
|
||||||
colnames_serum_df = colnames(serum_df); colnames_serum_df
|
|
||||||
|
|
||||||
#=========
|
|
||||||
# npa
|
|
||||||
#=========
|
|
||||||
npa_regex = regex(".*_npa[1-3]{1}$", ignore_case = T)
|
|
||||||
npa_cols_i = str_extract(colnames(my_data), npa_regex) # not boolean
|
|
||||||
#npa_cols_b = colnames(my_data)%in%npa_cols_i # boolean
|
|
||||||
|
|
||||||
npa_cols = colnames(my_data)[colnames(my_data)%in%npa_cols_i]
|
|
||||||
|
|
||||||
# this contains log columns + daynpap_npaXX: omitting these
|
|
||||||
npa_regex_log_days = regex("log|day|vl_samptime|ct.*_npa[1-3]{1}$", ignore_case = T, perl = T)
|
|
||||||
npa_cols_to_omit = npa_cols[grepl(npa_regex_log_days, npa_cols)]; npa_cols_to_omit
|
|
||||||
|
|
||||||
npa_cols_clean = npa_cols[!npa_cols%in%npa_cols_to_omit]; npa_cols_clean
|
|
||||||
length(npa_cols_clean)
|
|
||||||
|
|
||||||
if( length(npa_cols_clean) == length(npa_cols) - length(npa_cols_to_omit) ){
|
|
||||||
cat("PASS: clean cols extracted"
|
|
||||||
, "\nNo. of clean npa cols to extract:", length(npa_cols_clean))
|
|
||||||
}else{
|
|
||||||
cat("FAIL: length mismatch. Aborting further cols extraction"
|
|
||||||
, "Expected length:", length(npa_cols) - length(npa_cols_to_omit)
|
|
||||||
, "Got:", length(npa_cols_clean) )
|
|
||||||
}
|
|
||||||
|
|
||||||
npa_cols_to_extract = c(meta_data_cols, npa_cols_clean)
|
|
||||||
|
|
||||||
cat("Extracting NPA cols + metadata_cols")
|
|
||||||
|
|
||||||
if ( length(npa_cols_to_extract) == length(meta_data_cols) + length(npa_cols_clean) ){
|
|
||||||
cat("Extracing", length(npa_cols_to_extract), "columns for npa")
|
|
||||||
npa_df = my_data[, npa_cols_to_extract]
|
|
||||||
}else{
|
|
||||||
cat("FAIL: length mismatch"
|
|
||||||
, "Expeceted to extract:", length(meta_data_cols) + length(npa_cols_clean), "columns"
|
|
||||||
, "Got:", length(npa_cols_to_extract))
|
|
||||||
}
|
|
||||||
|
|
||||||
colnames_npa_df = colnames(npa_df); colnames_npa_df
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# quick checks
|
|
||||||
#==============
|
|
||||||
colnames_check = as.data.frame(cbind(colnames_sam_df, colnames_serum_df, colnames_npa_df))
|
|
||||||
tail(colnames_check) # gives a warning message due to differing no. of rows for cbind!
|
|
||||||
|
|
||||||
# put NA where a match doesn't exist
|
|
||||||
# unmatched lengths
|
|
||||||
#colnames_check[117,1] <- NA
|
|
||||||
#colnames_check[117,2] <- NA
|
|
||||||
|
|
||||||
if ( ncol(sam_df) == ncol(serum_df) ){
|
|
||||||
start = ncol(sam_df)+1
|
|
||||||
extra_cols = start:ncol(npa_df)
|
|
||||||
}
|
|
||||||
|
|
||||||
colnames_check_f = colnames_check
|
|
||||||
tail(colnames_check_f)
|
|
||||||
|
|
||||||
for (i in extra_cols){
|
|
||||||
for (j in 1:2) {
|
|
||||||
cat("\ni:", i
|
|
||||||
,"\nj:", j)
|
|
||||||
colnames_check_f[i,j] <- NA
|
|
||||||
#colnames_check_f[i, j]< - NA
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
tail(colnames_check_f)
|
|
||||||
|
|
||||||
##########################################################################
|
|
||||||
# LF data
|
|
||||||
##########################################################################
|
|
||||||
cols_to_omit = c("adult"
|
|
||||||
#, "obese2"
|
|
||||||
#, "height", "height_unit", "weight"
|
|
||||||
#, "weight_unit", "visual_est_bmi", "bmi_rating"
|
|
||||||
)
|
|
||||||
|
|
||||||
pivot_cols = meta_data_cols
|
|
||||||
# subselect pivot_cols
|
|
||||||
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
|
|
||||||
ncols_omitted = table(meta_data_cols%in%cols_to_omit)[[2]]
|
|
||||||
ncols_omitted
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# lf data: sam
|
|
||||||
#==============
|
|
||||||
str(sam_df)
|
|
||||||
table(sam_df$obesity)
|
|
||||||
#table(sam_df$obese2)
|
|
||||||
|
|
||||||
#sam_df_adults = sam_df[sam_df$adult == 1,] # resolved at source and only dealing wit age as adult
|
|
||||||
sam_df_adults = sam_df
|
|
||||||
|
|
||||||
wf_cols = colnames(sam_df_adults)[!colnames(sam_df_adults)%in%cols_to_omit]
|
|
||||||
sam_wf = sam_df_adults[wf_cols]
|
|
||||||
|
|
||||||
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
|
|
||||||
cat("PASS: pivot cols successfully extracted")
|
|
||||||
}else{
|
|
||||||
cat("FAIL: length mismatch! pivot cols could not be extracted"
|
|
||||||
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
|
|
||||||
, "\nGot:",length(pivot_cols) )
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
expected_rows_sam_lf = nrow(sam_wf) * (length(sam_wf) - length(pivot_cols)); expected_rows_sam_lf
|
|
||||||
|
|
||||||
# using regex:
|
|
||||||
sam_lf = sam_wf %>%
|
|
||||||
tidyr::pivot_longer(-all_of(pivot_cols)
|
|
||||||
, names_to = c("mediator", "sample_type", "timepoint")
|
|
||||||
, names_pattern = "(.*)_(.*)([1-3]{1})"
|
|
||||||
, values_to = "value")
|
|
||||||
|
|
||||||
if (
|
|
||||||
(nrow(sam_lf) == expected_rows_sam_lf) & (sum(table(is.na(sam_lf$mediator))) == expected_rows_sam_lf)
|
|
||||||
) {
|
|
||||||
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
|
|
||||||
, "\nNo. of rows: ", nrow(sam_lf)
|
|
||||||
, "\nNo. of cols: ", ncol(sam_lf)))
|
|
||||||
} else{
|
|
||||||
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
|
|
||||||
, "\nExpected no. of rows: ", expected_rows_sam_lf
|
|
||||||
, "\nGot: ", nrow(sam_lf)
|
|
||||||
, "\ncheck expected rows calculation!"))
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
#library(data.table)
|
|
||||||
#foo = sam_df_adults[1:10]
|
|
||||||
#long <- melt(setDT(sam_df_adults), id.vars = pivot_cols, variable.name = "levels")
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# lf data: serum
|
|
||||||
#==============
|
|
||||||
str(serum_df)
|
|
||||||
table(serum_df$obesity)
|
|
||||||
#table(serum_df$obese2)
|
|
||||||
|
|
||||||
#serum_df_adults = serum_df[serum_df$adult == 1,] # extract based on age
|
|
||||||
serum_df_adults = serum_df
|
|
||||||
|
|
||||||
wf_cols = colnames(serum_df_adults)[!colnames(serum_df_adults)%in%cols_to_omit]
|
|
||||||
serum_wf = serum_df_adults[wf_cols]
|
|
||||||
|
|
||||||
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
|
|
||||||
cat("PASS: pivot cols successfully extracted")
|
|
||||||
}else{
|
|
||||||
cat("FAIL: length mismatch! pivot cols could not be extracted"
|
|
||||||
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
|
|
||||||
, "\nGot:",length(pivot_cols) )
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
expected_rows_serum_lf = nrow(serum_wf) * (length(serum_wf) - length(pivot_cols)); expected_rows_serum_lf
|
|
||||||
|
|
||||||
# using regex:
|
|
||||||
serum_lf = serum_wf %>%
|
|
||||||
tidyr::pivot_longer(-all_of(pivot_cols)
|
|
||||||
, names_to = c("mediator", "sample_type", "timepoint")
|
|
||||||
, names_pattern = "(.*)_(.*)([1-3]{1})"
|
|
||||||
, values_to = "value")
|
|
||||||
|
|
||||||
if (
|
|
||||||
(nrow(serum_lf) == expected_rows_serum_lf) & (sum(table(is.na(serum_lf$mediator))) == expected_rows_serum_lf)
|
|
||||||
) {
|
|
||||||
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
|
|
||||||
, "\nNo. of rows: ", nrow(serum_lf)
|
|
||||||
, "\nNo. of cols: ", ncol(serum_lf)))
|
|
||||||
} else{
|
|
||||||
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
|
|
||||||
, "\nExpected no. of rows: ", expected_rows_serum_lf
|
|
||||||
, "\nGot: ", nrow(serum_lf)
|
|
||||||
, "\ncheck expected rows calculation!"))
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# lf data: npa
|
|
||||||
#==============
|
|
||||||
str(npa_df)
|
|
||||||
table(npa_df$obesity)
|
|
||||||
#table(npa_df$obese2)
|
|
||||||
|
|
||||||
#npa_df_adults = npa_df[npa_df$adult == 1,] # extract based on age
|
|
||||||
npa_df_adults = npa_df
|
|
||||||
|
|
||||||
wf_cols = colnames(npa_df_adults)[!colnames(npa_df_adults)%in%cols_to_omit]
|
|
||||||
npa_wf = npa_df_adults[wf_cols]
|
|
||||||
|
|
||||||
if (length(pivot_cols) == length(meta_data_cols) - ncols_omitted){
|
|
||||||
cat("PASS: pivot cols successfully extracted")
|
|
||||||
}else{
|
|
||||||
cat("FAIL: length mismatch! pivot cols could not be extracted"
|
|
||||||
, "\nExpected length:", length(meta_data_cols) - ncols_omitted
|
|
||||||
, "\nGot:",length(pivot_cols) )
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
expected_rows_npa_lf = nrow(npa_wf) * (length(npa_wf) - length(pivot_cols)); expected_rows_npa_lf
|
|
||||||
|
|
||||||
# using regex:
|
|
||||||
npa_lf = npa_wf %>%
|
|
||||||
tidyr::pivot_longer(-all_of(pivot_cols)
|
|
||||||
, names_to = c("mediator", "sample_type", "timepoint")
|
|
||||||
, names_pattern = "(.*)_(.*)([1-3]{1})"
|
|
||||||
, values_to = "value")
|
|
||||||
|
|
||||||
if (
|
|
||||||
(nrow(npa_lf) == expected_rows_npa_lf) & (sum(table(is.na(npa_lf$mediator))) == expected_rows_npa_lf)
|
|
||||||
) {
|
|
||||||
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
|
|
||||||
, "\nNo. of rows: ", nrow(npa_lf)
|
|
||||||
, "\nNo. of cols: ", ncol(npa_lf)))
|
|
||||||
} else{
|
|
||||||
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
|
|
||||||
, "\nExpected no. of rows: ", expected_rows_npa_lf
|
|
||||||
, "\nGot: ", nrow(npa_lf)
|
|
||||||
, "\ncheck expected rows calculation!"))
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
# remove unnecessary variables
|
|
||||||
rm(sam_regex, sam_regex_log_days, sam_cols, sam_cols_clean, sam_cols_i, sam_cols_to_extract, sam_cols_to_omit)
|
|
||||||
rm(serum_regex, serum_regex_log_days, serum_cols, serum_cols_clean, serum_cols_i, serum_cols_to_extract, serum_cols_to_omit)
|
|
||||||
rm(npa_regex, npa_regex_log_days, npa_cols, npa_cols_clean, npa_cols_i, npa_cols_to_extract, npa_cols_to_omit)
|
|
||||||
rm(my_data)
|
|
||||||
rm(colnames_check)
|
|
||||||
rm(i, j
|
|
||||||
#, expected_cols
|
|
||||||
, start, wf_cols, extra_cols, cols_to_omit)
|
|
||||||
|
|
||||||
# rm not_clean dfs
|
|
||||||
rm(sam_df_adults, serum_df_adults, npa_df_adults)
|
|
||||||
|
|
||||||
# rm df
|
|
||||||
rm(sam_df, serum_df, npa_df)
|
|
||||||
rm(colnames_check_f
|
|
||||||
#, fp_adults_na)
|
|
||||||
)
|
|
|
@ -11,16 +11,17 @@ getwd()
|
||||||
#====================
|
#====================
|
||||||
# Input: source data
|
# Input: source data
|
||||||
#====================
|
#====================
|
||||||
source("read_data.R")
|
#source("read_data.R")
|
||||||
|
source("data_extraction_formatting_clinical.R")
|
||||||
|
|
||||||
#============================
|
#============================
|
||||||
# Data to use: Important step
|
# Data to use: Important step
|
||||||
#============================
|
#============================
|
||||||
# select df to use
|
# select df to use
|
||||||
my_data = fp_adults
|
my_data = fp_adults_ics
|
||||||
|
|
||||||
# clear unnecessary variables
|
# clear unnecessary variables
|
||||||
rm(all_df, adult_df, fp_adults_na)
|
rm(clinical_df_ics)
|
||||||
|
|
||||||
########################################################################
|
########################################################################
|
||||||
|
|
||||||
|
@ -184,6 +185,7 @@ cols_to_omit = c("adult"
|
||||||
)
|
)
|
||||||
|
|
||||||
pivot_cols = meta_data_cols
|
pivot_cols = meta_data_cols
|
||||||
|
|
||||||
# subselect pivot_cols
|
# subselect pivot_cols
|
||||||
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
|
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
|
||||||
ncols_omitted = table(meta_data_cols%in%cols_to_omit)[[2]]
|
ncols_omitted = table(meta_data_cols%in%cols_to_omit)[[2]]
|
||||||
|
@ -202,6 +204,7 @@ wf_cols = colnames(sam_df_adults)[!colnames(sam_df_adults)%in%cols_to_omit]
|
||||||
sam_wf = sam_df_adults[wf_cols]
|
sam_wf = sam_df_adults[wf_cols]
|
||||||
|
|
||||||
pivot_cols = meta_data_cols
|
pivot_cols = meta_data_cols
|
||||||
|
|
||||||
# subselect pivot_cols
|
# subselect pivot_cols
|
||||||
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
|
pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
|
||||||
|
|
|
@ -1,381 +0,0 @@
|
||||||
#!/usr/bin/Rscript
|
|
||||||
getwd()
|
|
||||||
setwd("~/git/mosaic_2020/")
|
|
||||||
getwd()
|
|
||||||
############################################################
|
|
||||||
# TASK: unpaired (time) analysis of mediators:
|
|
||||||
# sample type: NPA
|
|
||||||
# data: Flu positive adult patients
|
|
||||||
# group: obesity
|
|
||||||
############################################################
|
|
||||||
my_sample_type = "npa"
|
|
||||||
|
|
||||||
#=============
|
|
||||||
# Input
|
|
||||||
#=============
|
|
||||||
source("data_extraction_formatting_non_asthmatics.R")
|
|
||||||
|
|
||||||
# check: adult variable and age variable discrepancy!
|
|
||||||
metadata_all$mosaic[metadata_all$adult==1 & metadata_all$age<=18]
|
|
||||||
|
|
||||||
#=============
|
|
||||||
# Output
|
|
||||||
#=============
|
|
||||||
outfile_name = paste0("flu_stats_time_unpaired_NA_", my_sample_type, ".csv")
|
|
||||||
flu_stats_time_unpaired_na = paste0(outdir_stats, outfile_name)
|
|
||||||
|
|
||||||
#===============================
|
|
||||||
# data assignment for stats
|
|
||||||
#================================
|
|
||||||
wf = npa_wf[npa_wf$flustat == 1,]
|
|
||||||
lf = npa_lf[npa_lf$flustat == 1,]
|
|
||||||
lf$timepoint = paste0("t", lf$timepoint)
|
|
||||||
lf = lf[!lf$mediator == "vitd",]
|
|
||||||
########################################################################
|
|
||||||
# clear variables
|
|
||||||
rm(sam_lf, sam_wf
|
|
||||||
, serum_lf, serum_wf)
|
|
||||||
rm(colnames_sam_df, expected_rows_sam_lf
|
|
||||||
, colnames_serum_df, expected_rows_serum_lf)
|
|
||||||
|
|
||||||
rm(pivot_cols)
|
|
||||||
|
|
||||||
# sanity checks
|
|
||||||
table(lf$timepoint)
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis
|
|
||||||
# with correction
|
|
||||||
########################################################################
|
|
||||||
# with adjustment: fdr and BH are identical
|
|
||||||
my_adjust_method = "BH"
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# unpaired: t1
|
|
||||||
#==============
|
|
||||||
lf_t1 = lf[lf$timepoint == "t1",]
|
|
||||||
sum(is.na(lf_t1$value))
|
|
||||||
|
|
||||||
foo = lf_t1[which(is.na(lf_t1$value)),]
|
|
||||||
#ci = which(is.na(lf_t1$value))
|
|
||||||
#lf_t1_comp = lf_t1[-ci,]
|
|
||||||
|
|
||||||
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
|
|
||||||
stats_un_t1 = compare_means(value~obesity
|
|
||||||
, group.by = "mediator"
|
|
||||||
#, data = lf_t1
|
|
||||||
, data = lf_t1_comp
|
|
||||||
, paired = FALSE
|
|
||||||
, p.adjust.method = my_adjust_method)
|
|
||||||
|
|
||||||
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
|
|
||||||
|
|
||||||
# add timepoint and convert to df
|
|
||||||
stats_un_t1$timepoint = "t1"
|
|
||||||
stats_un_t1 = as.data.frame(stats_un_t1)
|
|
||||||
class(stats_un_t1)
|
|
||||||
|
|
||||||
#----------------------------------------
|
|
||||||
# calculate n_obs for each mediator: t1
|
|
||||||
#----------------------------------------
|
|
||||||
#n_t1 = data.frame(table(lf_t1_comp$mediator))
|
|
||||||
n_t1_all = data.frame(table(lf_t1$mediator))
|
|
||||||
colnames(n_t1_all) = c("mediator", "n_obs")
|
|
||||||
n_t1_all$mediator = as.character(n_t1_all$mediator)
|
|
||||||
|
|
||||||
n_t1_comp = data.frame(table(lf_t1_comp$mediator))
|
|
||||||
colnames(n_t1_comp) = c("mediator", "n_obs_complete")
|
|
||||||
n_t1_comp$mediator = as.character(n_t1_comp$mediator)
|
|
||||||
|
|
||||||
merge_cols = intersect(names(n_t1_all), names(n_t1_comp)); merge_cols
|
|
||||||
n_t1= merge(n_t1_all, n_t1_comp, by = merge_cols, all = T)
|
|
||||||
|
|
||||||
#==================================
|
|
||||||
# Merge: merge stats + n_obs df
|
|
||||||
#===================================
|
|
||||||
merging_cols = intersect(names(stats_un_t1), names(n_t1)); merging_cols
|
|
||||||
if (all(n_t1$mediator%in%stats_un_t1$mediator)) {
|
|
||||||
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
|
|
||||||
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all = T)
|
|
||||||
cat("\nsuccessfull merge:"
|
|
||||||
, "\nnrow:", nrow(stats_un_t1)
|
|
||||||
, "\nncol:", ncol(stats_un_t1))
|
|
||||||
}else{
|
|
||||||
nf = n_t1$mediator[!n_t1$mediator%in%stats_un_t1$mediator]
|
|
||||||
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all.y = T)
|
|
||||||
cat("\nMerged with caution:"
|
|
||||||
, "\nnrows mismatch:", nf
|
|
||||||
, "not found in stats possibly due to all obs being LLODs"
|
|
||||||
, "\nintroduced NAs for:", nf
|
|
||||||
, "\nnrow:", nrow(stats_un_t1)
|
|
||||||
, "\nncol:", ncol(stats_un_t1))
|
|
||||||
}
|
|
||||||
|
|
||||||
# add bonferroni adjustment as well
|
|
||||||
stats_un_t1$p_adj_bonferroni = p.adjust(stats_un_t1$p, method = "bonferroni")
|
|
||||||
|
|
||||||
rm(n_t1)
|
|
||||||
rm(lf_t1_comp)
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# unpaired: t2
|
|
||||||
#==============
|
|
||||||
lf_t2 = lf[lf$timepoint == "t2",]
|
|
||||||
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
|
|
||||||
|
|
||||||
stats_un_t2 = compare_means(value~obesity
|
|
||||||
, group.by = "mediator"
|
|
||||||
#, data = lf_t2
|
|
||||||
, data = lf_t2_comp
|
|
||||||
, paired = FALSE
|
|
||||||
, p.adjust.method = my_adjust_method)
|
|
||||||
|
|
||||||
# add timepoint and convert to df
|
|
||||||
stats_un_t2$timepoint = "t2"
|
|
||||||
stats_un_t2 = as.data.frame(stats_un_t2)
|
|
||||||
class(stats_un_t2)
|
|
||||||
|
|
||||||
#----------------------------------------
|
|
||||||
# calculate n_obs for each mediator: t2
|
|
||||||
#----------------------------------------
|
|
||||||
#n_t2 = data.frame(table(lf_t2_comp$mediator))
|
|
||||||
n_t2_all = data.frame(table(lf_t2$mediator))
|
|
||||||
colnames(n_t2_all) = c("mediator", "n_obs")
|
|
||||||
n_t2_all$mediator = as.character(n_t2_all$mediator)
|
|
||||||
|
|
||||||
n_t2_comp = data.frame(table(lf_t2_comp$mediator))
|
|
||||||
colnames(n_t2_comp) = c("mediator", "n_obs_complete")
|
|
||||||
n_t2_comp$mediator = as.character(n_t2_comp$mediator)
|
|
||||||
|
|
||||||
merge_cols = intersect(names(n_t2_all), names(n_t2_comp)); merge_cols
|
|
||||||
n_t2= merge(n_t2_all, n_t2_comp, by = merge_cols, all = T)
|
|
||||||
|
|
||||||
#==================================
|
|
||||||
# Merge: merge stats + n_obs df
|
|
||||||
#==================================
|
|
||||||
merging_cols = intersect(names(stats_un_t2), names(n_t2)); merging_cols
|
|
||||||
if (all(n_t2$mediator%in%stats_un_t2$mediator)) {
|
|
||||||
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
|
|
||||||
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all = T)
|
|
||||||
cat("\nsuccessfull merge:"
|
|
||||||
, "\nnrow:", nrow(stats_un_t2)
|
|
||||||
, "\nncol:", ncol(stats_un_t2))
|
|
||||||
}else{
|
|
||||||
nf = n_t2$mediator[!n_t2$mediator%in%stats_un_t2$mediator]
|
|
||||||
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all.y = T)
|
|
||||||
cat("\nMerged with caution:"
|
|
||||||
, "\nnrows mismatch:", nf
|
|
||||||
, "not found in stats possibly due to all obs being LLODs"
|
|
||||||
, "\nintroduced NAs for:", nf
|
|
||||||
, "\nnrow:", nrow(stats_un_t2)
|
|
||||||
, "\nncol:", ncol(stats_un_t2))
|
|
||||||
}
|
|
||||||
|
|
||||||
# add bonferroni adjustment as well
|
|
||||||
stats_un_t2$p_adj_bonferroni = p.adjust(stats_un_t2$p, method = "bonferroni")
|
|
||||||
|
|
||||||
rm(n_t2)
|
|
||||||
rm(lf_t2_comp)
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# unpaired: t3
|
|
||||||
#==============
|
|
||||||
lf_t3 = lf[lf$timepoint == "t3",]
|
|
||||||
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
|
|
||||||
|
|
||||||
stats_un_t3 = compare_means(value~obesity
|
|
||||||
, group.by = "mediator"
|
|
||||||
#, data = lf_t3
|
|
||||||
, data = lf_t3_comp
|
|
||||||
, paired = FALSE
|
|
||||||
, p.adjust.method = my_adjust_method)
|
|
||||||
|
|
||||||
# add timepoint and convert to df
|
|
||||||
stats_un_t3$timepoint = "t3"
|
|
||||||
stats_un_t3 = as.data.frame(stats_un_t3)
|
|
||||||
class(stats_un_t3)
|
|
||||||
|
|
||||||
#----------------------------------------
|
|
||||||
# calculate n_obs for each mediator: t3
|
|
||||||
#----------------------------------------
|
|
||||||
#n_t3 = data.frame(table(lf_t3_comp$mediator))
|
|
||||||
n_t3_all = data.frame(table(lf_t3$mediator))
|
|
||||||
colnames(n_t3_all) = c("mediator", "n_obs")
|
|
||||||
n_t3_all$mediator = as.character(n_t3_all$mediator)
|
|
||||||
|
|
||||||
n_t3_comp = data.frame(table(lf_t3_comp$mediator))
|
|
||||||
colnames(n_t3_comp) = c("mediator", "n_obs_complete")
|
|
||||||
n_t3_comp$mediator = as.character(n_t3_comp$mediator)
|
|
||||||
|
|
||||||
merge_cols = intersect(names(n_t3_all), names(n_t3_comp)); merge_cols
|
|
||||||
n_t3= merge(n_t3_all, n_t3_comp, by = merge_cols, all = T)
|
|
||||||
|
|
||||||
#==================================
|
|
||||||
# Merge: merge stats + n_obs df
|
|
||||||
#==================================
|
|
||||||
merging_cols = intersect(names(stats_un_t3), names(n_t3)); merging_cols
|
|
||||||
if (all(n_t3$mediator%in%stats_un_t3$mediator)) {
|
|
||||||
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
|
|
||||||
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all = T)
|
|
||||||
cat("\nsuccessfull merge:"
|
|
||||||
, "\nnrow:", nrow(stats_un_t3)
|
|
||||||
, "\nncol:", ncol(stats_un_t3))
|
|
||||||
}else{
|
|
||||||
nf = n_t3$mediator[!n_t3$mediator%in%stats_un_t3$mediator]
|
|
||||||
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all.y = T)
|
|
||||||
cat("\nMerged with caution:"
|
|
||||||
, "\nnrows mismatch:", nf
|
|
||||||
, "not found in stats possibly due to all obs being LLODs"
|
|
||||||
, "\nintroduced NAs for:", nf
|
|
||||||
, "\nnrow:", nrow(stats_un_t3)
|
|
||||||
, "\nncol:", ncol(stats_un_t3))
|
|
||||||
}
|
|
||||||
|
|
||||||
# add bonferroni adjustment as well
|
|
||||||
stats_un_t3$p_adj_bonferroni = p.adjust(stats_un_t3$p, method = "bonferroni")
|
|
||||||
|
|
||||||
rm(n_t3)
|
|
||||||
rm(lf_t3_comp)
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
#==============
|
|
||||||
# Rbind these dfs
|
|
||||||
#==============
|
|
||||||
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
|
|
||||||
|
|
||||||
n_dfs = 3
|
|
||||||
|
|
||||||
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
|
|
||||||
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
|
|
||||||
expected_rows = nrow(stats_un_t1) * n_dfs
|
|
||||||
expected_cols = ncol(stats_un_t1)
|
|
||||||
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
|
|
||||||
}else{
|
|
||||||
cat("FAIL: dfs have different no. of rows and cols"
|
|
||||||
, "\nCheck harcoded value of n_dfs"
|
|
||||||
, "\nexpected_rows and cols could not be generated")
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
|
|
||||||
print("PASS: colnames match. Rbind the 3 dfs...")
|
|
||||||
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
|
|
||||||
} else{
|
|
||||||
cat("FAIL: cannot combined dfs. Colnames don't match!")
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
|
|
||||||
cat("PASS: combined_df has expected dimension"
|
|
||||||
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
|
|
||||||
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
|
|
||||||
}else{
|
|
||||||
cat("FAIL: combined_df dimension mismatch")
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
#######################################################################
|
|
||||||
#=================
|
|
||||||
# formatting df
|
|
||||||
#=================
|
|
||||||
# delete: unnecessary column
|
|
||||||
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
|
|
||||||
|
|
||||||
# add sample_type
|
|
||||||
cat("Adding sample type info as a column", my_sample_type, "...")
|
|
||||||
combined_unpaired_stats$sample_type = my_sample_type
|
|
||||||
|
|
||||||
# add: reflect stats method correctly i.e paired or unpaired
|
|
||||||
# incase there are NA due to LLODs, the gsub won't work!
|
|
||||||
#combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
|
|
||||||
combined_unpaired_stats$method = "wilcoxon unpaired"
|
|
||||||
combined_unpaired_stats$method
|
|
||||||
|
|
||||||
# add an extra column for padjust_signif: my_adjust_method
|
|
||||||
combined_unpaired_stats$padjust_signif = combined_unpaired_stats$p.adj
|
|
||||||
# add appropriate symbols for padjust_signif: my_adjust_method
|
|
||||||
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
|
|
||||||
, padjust_signif <=0.0001 ~ '****'
|
|
||||||
, padjust_signif <=0.001 ~ '***'
|
|
||||||
, padjust_signif <=0.01 ~ '**'
|
|
||||||
, padjust_signif <0.05 ~ '*'
|
|
||||||
, TRUE ~ 'ns'))
|
|
||||||
# add an extra column for p_bon_signif
|
|
||||||
combined_unpaired_stats$p_bon_signif = combined_unpaired_stats$p_adj_bonferroni
|
|
||||||
# add appropriate symbols for p_bon_signif
|
|
||||||
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, p_bon_signif = case_when(p_bon_signif == 0.05 ~ "."
|
|
||||||
, p_bon_signif <=0.0001 ~ '****'
|
|
||||||
, p_bon_signif <=0.001 ~ '***'
|
|
||||||
, p_bon_signif <=0.01 ~ '**'
|
|
||||||
, p_bon_signif <0.05 ~ '*'
|
|
||||||
, TRUE ~ 'ns'))
|
|
||||||
# reorder columns
|
|
||||||
print("preparing to reorder columns...")
|
|
||||||
colnames(combined_unpaired_stats)
|
|
||||||
my_col_order2 = c("mediator"
|
|
||||||
, "timepoint"
|
|
||||||
, "sample_type"
|
|
||||||
, "n_obs"
|
|
||||||
, "n_obs_complete"
|
|
||||||
, "group1"
|
|
||||||
, "group2"
|
|
||||||
, "method"
|
|
||||||
, "p"
|
|
||||||
, "p.format"
|
|
||||||
, "p.signif"
|
|
||||||
, "p.adj"
|
|
||||||
, "padjust_signif"
|
|
||||||
, "p_adj_bonferroni"
|
|
||||||
, "p_bon_signif")
|
|
||||||
|
|
||||||
if( length(my_col_order2) == ncol(combined_unpaired_stats) && (all(my_col_order2%in%colnames(combined_unpaired_stats))) ){
|
|
||||||
print("PASS: Reordering columns...")
|
|
||||||
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
|
|
||||||
print("Successful: column reordering")
|
|
||||||
print("formatted df called:'combined_unpaired_stats_f'")
|
|
||||||
cat('\nformatted df has the following dimensions\n')
|
|
||||||
print(dim(combined_unpaired_stats_f ))
|
|
||||||
} else{
|
|
||||||
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
|
|
||||||
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
|
|
||||||
, "\nGot:", length(my_col_order2)))
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
# assign nice column names like replace "." with "_"
|
|
||||||
colnames(combined_unpaired_stats_f) = c("mediator"
|
|
||||||
, "timepoint"
|
|
||||||
, "sample_type"
|
|
||||||
, "n_obs"
|
|
||||||
, "n_obs_complete"
|
|
||||||
, "group1"
|
|
||||||
, "group2"
|
|
||||||
, "method"
|
|
||||||
, "p"
|
|
||||||
, "p_format"
|
|
||||||
, "p_signif"
|
|
||||||
, paste0("p_adj_fdr_", my_adjust_method)
|
|
||||||
, paste0("p_", my_adjust_method, "_signif")
|
|
||||||
, "p_adj_bonferroni"
|
|
||||||
, "p_bon_signif")
|
|
||||||
|
|
||||||
colnames(combined_unpaired_stats_f)
|
|
||||||
|
|
||||||
#---------------
|
|
||||||
# quick summary
|
|
||||||
#---------------
|
|
||||||
# count how many meds are significant
|
|
||||||
n_sig = length(combined_unpaired_stats_f$mediator[combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)])
|
|
||||||
sig_meds = combined_unpaired_stats_f[(combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)),]
|
|
||||||
|
|
||||||
sig_meds$med_time = paste0(sig_meds$mediator, "@", sig_meds$timepoint)
|
|
||||||
|
|
||||||
cat("\nTotal no. of statistically significant mediators in", toupper(my_sample_type)
|
|
||||||
, "are:", n_sig
|
|
||||||
, "\nThese are:", sig_meds$med_time)
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
#******************
|
|
||||||
# write output file
|
|
||||||
#******************
|
|
||||||
cat("\nUNpaired stats for groups will be:", flu_stats_time_unpaired_na)
|
|
||||||
#write.csv(combined_unpaired_stats_f, flu_stats_time_unpaired_na, row.names = FALSE)
|
|
|
@ -1,383 +0,0 @@
|
||||||
#!/usr/bin/Rscript
|
|
||||||
getwd()
|
|
||||||
setwd("~/git/mosaic_2020/")
|
|
||||||
getwd()
|
|
||||||
############################################################
|
|
||||||
# TASK: unpaired (time) analysis of mediators:
|
|
||||||
# sample type: SAM
|
|
||||||
# data: Flu positive adult patients
|
|
||||||
# group: obesity
|
|
||||||
############################################################
|
|
||||||
my_sample_type = "sam"
|
|
||||||
|
|
||||||
#=============
|
|
||||||
# Input
|
|
||||||
#=============
|
|
||||||
source("data_extraction_formatting_non_asthmatics.R")
|
|
||||||
|
|
||||||
# check: adult variable and age variable discrepancy!
|
|
||||||
metadata_all$mosaic[metadata_all$adult==1 & metadata_all$age<=18]
|
|
||||||
|
|
||||||
#=============
|
|
||||||
# Output
|
|
||||||
#=============
|
|
||||||
outfile_name = paste0("flu_stats_time_unpaired_NA_", my_sample_type, ".csv")
|
|
||||||
flu_stats_time_unpaired_na = paste0(outdir_stats, outfile_name)
|
|
||||||
|
|
||||||
#===============================
|
|
||||||
# data assignment for stats
|
|
||||||
#================================
|
|
||||||
wf = sam_wf[sam_wf$flustat == 1,]
|
|
||||||
lf = sam_lf[sam_lf$flustat == 1,]
|
|
||||||
lf$timepoint = paste0("t", lf$timepoint)
|
|
||||||
lf = lf[!lf$mediator == "vitd",]
|
|
||||||
########################################################################
|
|
||||||
# clear variables
|
|
||||||
rm(npa_lf, npa_wf
|
|
||||||
, serum_lf, serum_wf)
|
|
||||||
rm(colnames_npa_df, expected_rows_npa_lf
|
|
||||||
, colnames_serum_df, expected_rows_serum_lf)
|
|
||||||
|
|
||||||
rm(pivot_cols)
|
|
||||||
|
|
||||||
# sanity checks
|
|
||||||
table(lf$timepoint)
|
|
||||||
length(unique(lf$mosaic))
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis
|
|
||||||
# with correction
|
|
||||||
#######################################################################
|
|
||||||
# with adjustment: fdr and BH are identical
|
|
||||||
my_adjust_method = "BH"
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# unpaired: t1
|
|
||||||
#==============
|
|
||||||
lf_t1 = lf[lf$timepoint == "t1",]
|
|
||||||
sum(is.na(lf_t1$value))
|
|
||||||
|
|
||||||
foo = lf_t1[which(is.na(lf_t1$value)),]
|
|
||||||
#ci = which(is.na(lf_t1$value))
|
|
||||||
#lf_t1_comp = lf_t1[-ci,]
|
|
||||||
|
|
||||||
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
|
|
||||||
stats_un_t1 = compare_means(value~obesity
|
|
||||||
, group.by = "mediator"
|
|
||||||
#, data = lf_t1
|
|
||||||
, data = lf_t1_comp
|
|
||||||
, paired = FALSE
|
|
||||||
, p.adjust.method = my_adjust_method)
|
|
||||||
|
|
||||||
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
|
|
||||||
|
|
||||||
# add timepoint and convert to df
|
|
||||||
stats_un_t1$timepoint = "t1"
|
|
||||||
stats_un_t1 = as.data.frame(stats_un_t1)
|
|
||||||
class(stats_un_t1)
|
|
||||||
|
|
||||||
#----------------------------------------
|
|
||||||
# calculate n_obs for each mediator: t1
|
|
||||||
#----------------------------------------
|
|
||||||
#n_t1 = data.frame(table(lf_t1_comp$mediator))
|
|
||||||
n_t1_all = data.frame(table(lf_t1$mediator))
|
|
||||||
colnames(n_t1_all) = c("mediator", "n_obs")
|
|
||||||
n_t1_all$mediator = as.character(n_t1_all$mediator)
|
|
||||||
|
|
||||||
n_t1_comp = data.frame(table(lf_t1_comp$mediator))
|
|
||||||
colnames(n_t1_comp) = c("mediator", "n_obs_complete")
|
|
||||||
n_t1_comp$mediator = as.character(n_t1_comp$mediator)
|
|
||||||
|
|
||||||
merge_cols = intersect(names(n_t1_all), names(n_t1_comp)); merge_cols
|
|
||||||
n_t1= merge(n_t1_all, n_t1_comp, by = merge_cols, all = T)
|
|
||||||
|
|
||||||
#==================================
|
|
||||||
# Merge: merge stats + n_obs df
|
|
||||||
#===================================
|
|
||||||
merging_cols = intersect(names(stats_un_t1), names(n_t1)); merging_cols
|
|
||||||
if (all(n_t1$mediator%in%stats_un_t1$mediator)) {
|
|
||||||
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
|
|
||||||
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all = T)
|
|
||||||
cat("\nsuccessfull merge:"
|
|
||||||
, "\nnrow:", nrow(stats_un_t1)
|
|
||||||
, "\nncol:", ncol(stats_un_t1))
|
|
||||||
}else{
|
|
||||||
nf = n_t1$mediator[!n_t1$mediator%in%stats_un_t1$mediator]
|
|
||||||
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all.y = T)
|
|
||||||
cat("\nMerged with caution:"
|
|
||||||
, "\nnrows mismatch:", nf
|
|
||||||
, "not found in stats possibly due to all obs being LLODs"
|
|
||||||
, "\nintroduced NAs for:", nf
|
|
||||||
, "\nnrow:", nrow(stats_un_t1)
|
|
||||||
, "\nncol:", ncol(stats_un_t1))
|
|
||||||
}
|
|
||||||
|
|
||||||
# add bonferroni adjustment as well
|
|
||||||
stats_un_t1$p_adj_bonferroni = p.adjust(stats_un_t1$p, method = "bonferroni")
|
|
||||||
|
|
||||||
rm(n_t1)
|
|
||||||
rm(lf_t1_comp)
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# unpaired: t2
|
|
||||||
#==============
|
|
||||||
lf_t2 = lf[lf$timepoint == "t2",]
|
|
||||||
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
|
|
||||||
|
|
||||||
stats_un_t2 = compare_means(value~obesity
|
|
||||||
, group.by = "mediator"
|
|
||||||
#, data = lf_t2
|
|
||||||
, data = lf_t2_comp
|
|
||||||
, paired = FALSE
|
|
||||||
, p.adjust.method = my_adjust_method)
|
|
||||||
# add timepoint and convert to df
|
|
||||||
stats_un_t2$timepoint = "t2"
|
|
||||||
stats_un_t2 = as.data.frame(stats_un_t2)
|
|
||||||
class(stats_un_t2)
|
|
||||||
|
|
||||||
#----------------------------------------
|
|
||||||
# calculate n_obs for each mediator: t2
|
|
||||||
#----------------------------------------
|
|
||||||
#n_t2 = data.frame(table(lf_t2_comp$mediator))
|
|
||||||
n_t2_all = data.frame(table(lf_t2$mediator))
|
|
||||||
colnames(n_t2_all) = c("mediator", "n_obs")
|
|
||||||
n_t2_all$mediator = as.character(n_t2_all$mediator)
|
|
||||||
|
|
||||||
n_t2_comp = data.frame(table(lf_t2_comp$mediator))
|
|
||||||
colnames(n_t2_comp) = c("mediator", "n_obs_complete")
|
|
||||||
n_t2_comp$mediator = as.character(n_t2_comp$mediator)
|
|
||||||
|
|
||||||
merge_cols = intersect(names(n_t2_all), names(n_t2_comp)); merge_cols
|
|
||||||
n_t2= merge(n_t2_all, n_t2_comp, by = merge_cols, all = T)
|
|
||||||
|
|
||||||
#==================================
|
|
||||||
# Merge: merge stats + n_obs df
|
|
||||||
#===================================
|
|
||||||
merging_cols = intersect(names(stats_un_t2), names(n_t2)); merging_cols
|
|
||||||
if (all(n_t2$mediator%in%stats_un_t2$mediator)) {
|
|
||||||
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
|
|
||||||
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all = T)
|
|
||||||
cat("\nsuccessfull merge:"
|
|
||||||
, "\nnrow:", nrow(stats_un_t2)
|
|
||||||
, "\nncol:", ncol(stats_un_t2))
|
|
||||||
}else{
|
|
||||||
nf = n_t2$mediator[!n_t2$mediator%in%stats_un_t2$mediator]
|
|
||||||
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all.y = T)
|
|
||||||
cat("\nMerged with caution:"
|
|
||||||
, "\nnrows mismatch:", nf
|
|
||||||
, "not found in stats possibly due to all obs being LLODs"
|
|
||||||
, "\nintroduced NAs for:", nf
|
|
||||||
, "\nnrow:", nrow(stats_un_t2)
|
|
||||||
, "\nncol:", ncol(stats_un_t2))
|
|
||||||
}
|
|
||||||
|
|
||||||
# add bonferroni adjustment as well
|
|
||||||
stats_un_t2$p_adj_bonferroni = p.adjust(stats_un_t2$p, method = "bonferroni")
|
|
||||||
|
|
||||||
rm(n_t2)
|
|
||||||
rm(lf_t2_comp)
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# unpaired: t3
|
|
||||||
#==============
|
|
||||||
lf_t3 = lf[lf$timepoint == "t3",]
|
|
||||||
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
|
|
||||||
|
|
||||||
stats_un_t3 = compare_means(value~obesity
|
|
||||||
, group.by = "mediator"
|
|
||||||
#, data = lf_t3
|
|
||||||
, data = lf_t3_comp
|
|
||||||
, paired = FALSE
|
|
||||||
, p.adjust.method = my_adjust_method)
|
|
||||||
# add timepoint and convert to df
|
|
||||||
stats_un_t3$timepoint = "t3"
|
|
||||||
stats_un_t3 = as.data.frame(stats_un_t3)
|
|
||||||
class(stats_un_t3)
|
|
||||||
|
|
||||||
#----------------------------------------
|
|
||||||
# calculate n_obs for each mediator: t3
|
|
||||||
#----------------------------------------
|
|
||||||
#n_t3 = data.frame(table(lf_t3_comp$mediator))
|
|
||||||
n_t3_all = data.frame(table(lf_t3$mediator))
|
|
||||||
colnames(n_t3_all) = c("mediator", "n_obs")
|
|
||||||
n_t3_all$mediator = as.character(n_t3_all$mediator)
|
|
||||||
|
|
||||||
n_t3_comp = data.frame(table(lf_t3_comp$mediator))
|
|
||||||
colnames(n_t3_comp) = c("mediator", "n_obs_complete")
|
|
||||||
n_t3_comp$mediator = as.character(n_t3_comp$mediator)
|
|
||||||
|
|
||||||
merge_cols = intersect(names(n_t3_all), names(n_t3_comp)); merge_cols
|
|
||||||
n_t3= merge(n_t3_all, n_t3_comp, by = merge_cols, all = T)
|
|
||||||
|
|
||||||
#==================================
|
|
||||||
# Merge: merge stats + n_obs df
|
|
||||||
#==================================
|
|
||||||
merging_cols = intersect(names(stats_un_t3), names(n_t3)); merging_cols
|
|
||||||
if (all(n_t3$mediator%in%stats_un_t3$mediator)) {
|
|
||||||
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
|
|
||||||
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all = T)
|
|
||||||
cat("\nsuccessfull merge:"
|
|
||||||
, "\nnrow:", nrow(stats_un_t3)
|
|
||||||
, "\nncol:", ncol(stats_un_t3))
|
|
||||||
}else{
|
|
||||||
nf = n_t3$mediator[!n_t3$mediator%in%stats_un_t3$mediator]
|
|
||||||
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all.y = T)
|
|
||||||
cat("\nMerged with caution:"
|
|
||||||
, "\nnrows mismatch:", nf
|
|
||||||
, "not found in stats possibly due to all obs being LLODs"
|
|
||||||
, "\nintroduced NAs for:", nf
|
|
||||||
, "\nnrow:", nrow(stats_un_t3)
|
|
||||||
, "\nncol:", ncol(stats_un_t3))
|
|
||||||
}
|
|
||||||
|
|
||||||
# check: satisfied!!!!
|
|
||||||
# FIXME: supply the col name automatically?
|
|
||||||
wilcox.test(wf$ifna2a_sam3[wf$obesity == 1], wf$ifna2a_sam3[wf$obesity == 0])
|
|
||||||
|
|
||||||
# add bonferroni adjustment as well
|
|
||||||
stats_un_t3$p_adj_bonferroni = p.adjust(stats_un_t3$p, method = "bonferroni")
|
|
||||||
|
|
||||||
rm(n_t3)
|
|
||||||
rm(lf_t3_comp)
|
|
||||||
########################################################################
|
|
||||||
#=================
|
|
||||||
# Rbind these dfs
|
|
||||||
#=================
|
|
||||||
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
|
|
||||||
|
|
||||||
n_dfs = 3
|
|
||||||
|
|
||||||
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
|
|
||||||
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
|
|
||||||
expected_rows = nrow(stats_un_t1) * n_dfs
|
|
||||||
expected_cols = ncol(stats_un_t1)
|
|
||||||
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
|
|
||||||
}else{
|
|
||||||
cat("FAIL: dfs have different no. of rows and cols"
|
|
||||||
, "\nCheck harcoded value of n_dfs"
|
|
||||||
, "\nexpected_rows and cols could not be generated")
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
|
|
||||||
print("PASS: colnames match. Rbind the 3 dfs...")
|
|
||||||
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
|
|
||||||
} else{
|
|
||||||
cat("FAIL: cannot combined dfs. Colnames don't match!")
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
|
|
||||||
cat("PASS: combined_df has expected dimension"
|
|
||||||
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
|
|
||||||
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
|
|
||||||
}else{
|
|
||||||
cat("FAIL: combined_df dimension mismatch")
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
#######################################################################
|
|
||||||
#=================
|
|
||||||
# formatting df
|
|
||||||
#=================
|
|
||||||
# delete: unnecessary column
|
|
||||||
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
|
|
||||||
|
|
||||||
# add sample_type
|
|
||||||
cat("Adding sample type info as a column", my_sample_type, "...")
|
|
||||||
combined_unpaired_stats$sample_type = my_sample_type
|
|
||||||
|
|
||||||
# add: reflect stats method correctly i.e paired or unpaired
|
|
||||||
# incase there are NA due to LLODs, the gsub won't work!
|
|
||||||
#combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
|
|
||||||
combined_unpaired_stats$method = "wilcoxon unpaired"
|
|
||||||
combined_unpaired_stats$method
|
|
||||||
|
|
||||||
# add an extra column for padjust_signif: my_adjust_method
|
|
||||||
combined_unpaired_stats$padjust_signif = combined_unpaired_stats$p.adj
|
|
||||||
# add appropriate symbols for padjust_signif: my_adjust_method
|
|
||||||
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
|
|
||||||
, padjust_signif <=0.0001 ~ '****'
|
|
||||||
, padjust_signif <=0.001 ~ '***'
|
|
||||||
, padjust_signif <=0.01 ~ '**'
|
|
||||||
, padjust_signif <0.05 ~ '*'
|
|
||||||
, TRUE ~ 'ns'))
|
|
||||||
# add an extra column for p_bon_signif
|
|
||||||
combined_unpaired_stats$p_bon_signif = combined_unpaired_stats$p_adj_bonferroni
|
|
||||||
# add appropriate symbols for p_bon_signif
|
|
||||||
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, p_bon_signif = case_when(p_bon_signif == 0.05 ~ "."
|
|
||||||
, p_bon_signif <=0.0001 ~ '****'
|
|
||||||
, p_bon_signif <=0.001 ~ '***'
|
|
||||||
, p_bon_signif <=0.01 ~ '**'
|
|
||||||
, p_bon_signif <0.05 ~ '*'
|
|
||||||
, TRUE ~ 'ns'))
|
|
||||||
# reorder columns
|
|
||||||
print("preparing to reorder columns...")
|
|
||||||
colnames(combined_unpaired_stats)
|
|
||||||
my_col_order2 = c("mediator"
|
|
||||||
, "timepoint"
|
|
||||||
, "sample_type"
|
|
||||||
, "n_obs"
|
|
||||||
, "n_obs_complete"
|
|
||||||
, "group1"
|
|
||||||
, "group2"
|
|
||||||
, "method"
|
|
||||||
, "p"
|
|
||||||
, "p.format"
|
|
||||||
, "p.signif"
|
|
||||||
, "p.adj"
|
|
||||||
, "padjust_signif"
|
|
||||||
, "p_adj_bonferroni"
|
|
||||||
, "p_bon_signif")
|
|
||||||
|
|
||||||
if( length(my_col_order2) == ncol(combined_unpaired_stats) && (all(my_col_order2%in%colnames(combined_unpaired_stats))) ){
|
|
||||||
print("PASS: Reordering columns...")
|
|
||||||
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
|
|
||||||
print("Successful: column reordering")
|
|
||||||
print("formatted df called:'combined_unpaired_stats_f'")
|
|
||||||
cat('\nformatted df has the following dimensions\n')
|
|
||||||
print(dim(combined_unpaired_stats_f ))
|
|
||||||
} else{
|
|
||||||
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
|
|
||||||
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
|
|
||||||
, "\nGot:", length(my_col_order2)))
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
# assign nice column names like replace "." with "_"
|
|
||||||
colnames(combined_unpaired_stats_f) = c("mediator"
|
|
||||||
, "timepoint"
|
|
||||||
, "sample_type"
|
|
||||||
, "n_obs"
|
|
||||||
, "n_obs_complete"
|
|
||||||
, "group1"
|
|
||||||
, "group2"
|
|
||||||
, "method"
|
|
||||||
, "p"
|
|
||||||
, "p_format"
|
|
||||||
, "p_signif"
|
|
||||||
, paste0("p_adj_fdr_", my_adjust_method)
|
|
||||||
, paste0("p_", my_adjust_method, "_signif")
|
|
||||||
, "p_adj_bonferroni"
|
|
||||||
, "p_bon_signif")
|
|
||||||
|
|
||||||
colnames(combined_unpaired_stats_f)
|
|
||||||
|
|
||||||
#---------------
|
|
||||||
# quick summary
|
|
||||||
#---------------
|
|
||||||
# count how many meds are significant
|
|
||||||
n_sig = length(combined_unpaired_stats_f$mediator[combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)])
|
|
||||||
sig_meds = combined_unpaired_stats_f[(combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)),]
|
|
||||||
|
|
||||||
sig_meds$med_time = paste0(sig_meds$mediator, "@", sig_meds$timepoint)
|
|
||||||
|
|
||||||
cat("\nTotal no. of statistically significant mediators in", toupper(my_sample_type)
|
|
||||||
, "are:", n_sig
|
|
||||||
, "\nThese are:", sig_meds$med_time)
|
|
||||||
|
|
||||||
#######################################################################
|
|
||||||
#******************
|
|
||||||
# write output file
|
|
||||||
#******************
|
|
||||||
cat("\nUNpaired stats for groups will be:", flu_stats_time_unpaired_na)
|
|
||||||
#write.csv(combined_unpaired_stats_f, flu_stats_time_unpaired_na, row.names = FALSE)
|
|
|
@ -1,376 +0,0 @@
|
||||||
#!/usr/bin/Rscript
|
|
||||||
getwd()
|
|
||||||
setwd("~/git/mosaic_2020/")
|
|
||||||
getwd()
|
|
||||||
############################################################
|
|
||||||
# TASK: unpaired (time) analysis of mediators: serum
|
|
||||||
############################################################
|
|
||||||
my_sample_type = "serum"
|
|
||||||
|
|
||||||
#=============
|
|
||||||
# Input
|
|
||||||
#=============
|
|
||||||
source("data_extraction_formatting_non_asthmatics.R")
|
|
||||||
|
|
||||||
# check: adult variable and age variable discrepancy!
|
|
||||||
metadata_all$mosaic[metadata_all$adult==1 & metadata_all$age<=18]
|
|
||||||
|
|
||||||
#=============
|
|
||||||
# Output
|
|
||||||
#=============
|
|
||||||
outfile_name = paste0("flu_stats_time_unpaired_NA_", my_sample_type, ".csv")
|
|
||||||
flu_stats_time_unpaired_na = paste0(outdir_stats, outfile_name)
|
|
||||||
|
|
||||||
#===============================
|
|
||||||
# data assignment for stats
|
|
||||||
#================================
|
|
||||||
wf = serum_wf[serum_wf$flustat == 1,]
|
|
||||||
lf = serum_lf[serum_lf$flustat == 1,]
|
|
||||||
lf$timepoint = paste0("t", lf$timepoint)
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
# clear variables
|
|
||||||
rm(sam_lf, sam_wf
|
|
||||||
, npa_lf, npa_wf)
|
|
||||||
rm(colnames_sam_df, expected_rows_sam_lf
|
|
||||||
, colnames_npa_df, expected_rows_npa_lf)
|
|
||||||
|
|
||||||
rm(pivot_cols)
|
|
||||||
|
|
||||||
# sanity checks
|
|
||||||
table(lf$timepoint)
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis
|
|
||||||
# with correction
|
|
||||||
#######################################################################
|
|
||||||
# with adjustment: fdr and BH are identical
|
|
||||||
my_adjust_method = "BH"
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# unpaired: t1
|
|
||||||
#==============
|
|
||||||
lf_t1 = lf[lf$timepoint == "t1",]
|
|
||||||
sum(is.na(lf_t1$value))
|
|
||||||
|
|
||||||
foo = lf_t1[which(is.na(lf_t1$value)),]
|
|
||||||
ci = which(is.na(lf_t1$value))
|
|
||||||
#lf_t1_comp = lf_t1[-ci,]
|
|
||||||
|
|
||||||
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
|
|
||||||
stats_un_t1 = compare_means(value~obesity
|
|
||||||
, group.by = "mediator"
|
|
||||||
#, data = lf_t1
|
|
||||||
, data = lf_t1_comp
|
|
||||||
, paired = FALSE
|
|
||||||
, p.adjust.method = my_adjust_method)
|
|
||||||
|
|
||||||
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
|
|
||||||
|
|
||||||
# add timepoint and convert to df
|
|
||||||
stats_un_t1$timepoint = "t1"
|
|
||||||
stats_un_t1 = as.data.frame(stats_un_t1)
|
|
||||||
class(stats_un_t1)
|
|
||||||
|
|
||||||
#----------------------------------------
|
|
||||||
# calculate n_obs for each mediator: t1
|
|
||||||
#----------------------------------------
|
|
||||||
#n_t1 = data.frame(table(lf_t1_comp$mediator))
|
|
||||||
n_t1_all = data.frame(table(lf_t1$mediator))
|
|
||||||
colnames(n_t1_all) = c("mediator", "n_obs")
|
|
||||||
n_t1_all$mediator = as.character(n_t1_all$mediator)
|
|
||||||
|
|
||||||
n_t1_comp = data.frame(table(lf_t1_comp$mediator))
|
|
||||||
colnames(n_t1_comp) = c("mediator", "n_obs_complete")
|
|
||||||
n_t1_comp$mediator = as.character(n_t1_comp$mediator)
|
|
||||||
|
|
||||||
merge_cols = intersect(names(n_t1_all), names(n_t1_comp)); merge_cols
|
|
||||||
n_t1= merge(n_t1_all, n_t1_comp, by = merge_cols, all = T)
|
|
||||||
|
|
||||||
#==================================
|
|
||||||
# Merge: merge stats + n_obs df
|
|
||||||
#==================================
|
|
||||||
merging_cols = intersect(names(stats_un_t1), names(n_t1)); merging_cols
|
|
||||||
if (all(n_t1$mediator%in%stats_un_t1$mediator)) {
|
|
||||||
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
|
|
||||||
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all = T)
|
|
||||||
cat("\nsuccessfull merge:"
|
|
||||||
, "\nnrow:", nrow(stats_un_t1)
|
|
||||||
, "\nncol:", ncol(stats_un_t1))
|
|
||||||
}else{
|
|
||||||
nf = n_t1$mediator[!n_t1$mediator%in%stats_un_t1$mediator]
|
|
||||||
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all.y = T)
|
|
||||||
cat("\nMerged with caution:"
|
|
||||||
, "\nnrows mismatch:", nf
|
|
||||||
, "not found in stats possibly due to all obs being LLODs"
|
|
||||||
, "\nintroduced NAs for:", nf
|
|
||||||
, "\nnrow:", nrow(stats_un_t1)
|
|
||||||
, "\nncol:", ncol(stats_un_t1))
|
|
||||||
}
|
|
||||||
|
|
||||||
# add bonferroni adjustment as well
|
|
||||||
stats_un_t1$p_adj_bonferroni = p.adjust(stats_un_t1$p, method = "bonferroni")
|
|
||||||
|
|
||||||
rm(n_t1)
|
|
||||||
rm(lf_t1_comp)
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# unpaired: t2
|
|
||||||
#==============
|
|
||||||
lf_t2 = lf[lf$timepoint == "t2",]
|
|
||||||
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
|
|
||||||
|
|
||||||
stats_un_t2 = compare_means(value~obesity
|
|
||||||
, group.by = "mediator"
|
|
||||||
#, data = lf_t2
|
|
||||||
, data = lf_t2_comp
|
|
||||||
, paired = FALSE
|
|
||||||
, p.adjust.method = my_adjust_method)
|
|
||||||
# add timepoint and convert to df
|
|
||||||
stats_un_t2$timepoint = "t2"
|
|
||||||
stats_un_t2 = as.data.frame(stats_un_t2)
|
|
||||||
class(stats_un_t2)
|
|
||||||
|
|
||||||
#----------------------------------------
|
|
||||||
# calculate n_obs for each mediator: t2
|
|
||||||
#----------------------------------------
|
|
||||||
#n_t2 = data.frame(table(lf_t2_comp$mediator))
|
|
||||||
n_t2_all = data.frame(table(lf_t2$mediator))
|
|
||||||
colnames(n_t2_all) = c("mediator", "n_obs")
|
|
||||||
n_t2_all$mediator = as.character(n_t2_all$mediator)
|
|
||||||
|
|
||||||
n_t2_comp = data.frame(table(lf_t2_comp$mediator))
|
|
||||||
colnames(n_t2_comp) = c("mediator", "n_obs_complete")
|
|
||||||
n_t2_comp$mediator = as.character(n_t2_comp$mediator)
|
|
||||||
|
|
||||||
merge_cols = intersect(names(n_t2_all), names(n_t2_comp)); merge_cols
|
|
||||||
n_t2= merge(n_t2_all, n_t2_comp, by = merge_cols, all = T)
|
|
||||||
|
|
||||||
#==================================
|
|
||||||
# Merge: merge stats + n_obs df
|
|
||||||
#==================================
|
|
||||||
merging_cols = intersect(names(stats_un_t2), names(n_t2)); merging_cols
|
|
||||||
if (all(n_t2$mediator%in%stats_un_t2$mediator)) {
|
|
||||||
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
|
|
||||||
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all = T)
|
|
||||||
cat("\nsuccessfull merge:"
|
|
||||||
, "\nnrow:", nrow(stats_un_t2)
|
|
||||||
, "\nncol:", ncol(stats_un_t2))
|
|
||||||
}else{
|
|
||||||
nf = n_t2$mediator[!n_t2$mediator%in%stats_un_t2$mediator]
|
|
||||||
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all.y = T)
|
|
||||||
cat("\nMerged with caution:"
|
|
||||||
, "\nnrows mismatch:", nf
|
|
||||||
, "not found in stats possibly due to all obs being LLODs"
|
|
||||||
, "\nintroduced NAs for:", nf
|
|
||||||
, "\nnrow:", nrow(stats_un_t2)
|
|
||||||
, "\nncol:", ncol(stats_un_t2))
|
|
||||||
}
|
|
||||||
|
|
||||||
# add bonferroni adjustment as well
|
|
||||||
stats_un_t2$p_adj_bonferroni = p.adjust(stats_un_t2$p, method = "bonferroni")
|
|
||||||
|
|
||||||
rm(n_t2)
|
|
||||||
rm(lf_t2_comp)
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# unpaired: t3
|
|
||||||
#==============
|
|
||||||
lf_t3 = lf[lf$timepoint == "t3",]
|
|
||||||
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
|
|
||||||
|
|
||||||
stats_un_t3 = compare_means(value~obesity
|
|
||||||
, group.by = "mediator"
|
|
||||||
#, data = lf_t3
|
|
||||||
, data = lf_t3_comp
|
|
||||||
, paired = FALSE
|
|
||||||
, p.adjust.method = my_adjust_method)
|
|
||||||
|
|
||||||
# add timepoint and convert to df
|
|
||||||
stats_un_t3$timepoint = "t3"
|
|
||||||
stats_un_t3 = as.data.frame(stats_un_t3)
|
|
||||||
class(stats_un_t3)
|
|
||||||
|
|
||||||
#----------------------------------------
|
|
||||||
# calculate n_obs for each mediator: t3
|
|
||||||
#----------------------------------------
|
|
||||||
#n_t3 = data.frame(table(lf_t3_comp$mediator))
|
|
||||||
n_t3_all = data.frame(table(lf_t3$mediator))
|
|
||||||
colnames(n_t3_all) = c("mediator", "n_obs")
|
|
||||||
n_t3_all$mediator = as.character(n_t3_all$mediator)
|
|
||||||
|
|
||||||
n_t3_comp = data.frame(table(lf_t3_comp$mediator))
|
|
||||||
colnames(n_t3_comp) = c("mediator", "n_obs_complete")
|
|
||||||
n_t3_comp$mediator = as.character(n_t3_comp$mediator)
|
|
||||||
|
|
||||||
merge_cols = intersect(names(n_t3_all), names(n_t3_comp)); merge_cols
|
|
||||||
n_t3 = merge(n_t3_all, n_t3_comp, by = merge_cols, all = T)
|
|
||||||
|
|
||||||
#==================================
|
|
||||||
# Merge: merge stats + n_obs df
|
|
||||||
#==================================
|
|
||||||
merging_cols = intersect(names(stats_un_t3), names(n_t3)); merging_cols
|
|
||||||
if (all(n_t3$mediator%in%stats_un_t3$mediator)) {
|
|
||||||
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
|
|
||||||
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all = T)
|
|
||||||
cat("\nsuccessfull merge:"
|
|
||||||
, "\nnrow:", nrow(stats_un_t3)
|
|
||||||
, "\nncol:", ncol(stats_un_t3))
|
|
||||||
}else{
|
|
||||||
nf = n_t3$mediator[!n_t3$mediator%in%stats_un_t3$mediator]
|
|
||||||
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all.y = T)
|
|
||||||
cat("\nMerged with caution:"
|
|
||||||
, "\nnrows mismatch:", nf
|
|
||||||
, "not found in stats possibly due to all obs being LLODs"
|
|
||||||
, "\nintroduced NAs for:", nf
|
|
||||||
, "\nnrow:", nrow(stats_un_t3)
|
|
||||||
, "\nncol:", ncol(stats_un_t3))
|
|
||||||
}
|
|
||||||
|
|
||||||
# add bonferroni adjustment as well
|
|
||||||
stats_un_t3$p_adj_bonferroni = p.adjust(stats_un_t3$p, method = "bonferroni")
|
|
||||||
|
|
||||||
rm(n_t3)
|
|
||||||
rm(lf_t3_comp)
|
|
||||||
########################################################################
|
|
||||||
#==============
|
|
||||||
# Rbind these dfs
|
|
||||||
#==============
|
|
||||||
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
|
|
||||||
|
|
||||||
n_dfs = 3
|
|
||||||
|
|
||||||
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
|
|
||||||
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
|
|
||||||
expected_rows = nrow(stats_un_t1) * n_dfs
|
|
||||||
expected_cols = ncol(stats_un_t1)
|
|
||||||
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
|
|
||||||
}else{
|
|
||||||
cat("FAIL: dfs have different no. of rows and cols"
|
|
||||||
, "\nCheck harcoded value of n_dfs"
|
|
||||||
, "\nexpected_rows and cols could not be generated")
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
|
|
||||||
print("PASS: colnames match. Rbind the 3 dfs...")
|
|
||||||
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
|
|
||||||
} else{
|
|
||||||
cat("FAIL: cannot combined dfs. Colnames don't match!")
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
|
|
||||||
cat("PASS: combined_df has expected dimension"
|
|
||||||
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
|
|
||||||
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
|
|
||||||
}else{
|
|
||||||
cat("FAIL: combined_df dimension mismatch")
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
|
|
||||||
#######################################################################
|
|
||||||
#=================
|
|
||||||
# formatting df
|
|
||||||
#=================
|
|
||||||
# delete: unnecessary column
|
|
||||||
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
|
|
||||||
|
|
||||||
# add sample_type
|
|
||||||
cat("Adding sample type info as a column", my_sample_type, "...")
|
|
||||||
combined_unpaired_stats$sample_type = my_sample_type
|
|
||||||
|
|
||||||
# add: reflect stats method correctly i.e paired or unpaired
|
|
||||||
# incase there are NA due to LLODs, the gsub won't work!
|
|
||||||
#combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
|
|
||||||
combined_unpaired_stats$method = "wilcoxon unpaired"
|
|
||||||
combined_unpaired_stats$method
|
|
||||||
|
|
||||||
# add an extra column for padjust_signif: my_adjust_method
|
|
||||||
combined_unpaired_stats$padjust_signif = combined_unpaired_stats$p.adj
|
|
||||||
# add appropriate symbols for padjust_signif: my_adjust_method
|
|
||||||
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
|
|
||||||
, padjust_signif <=0.0001 ~ '****'
|
|
||||||
, padjust_signif <=0.001 ~ '***'
|
|
||||||
, padjust_signif <=0.01 ~ '**'
|
|
||||||
, padjust_signif <0.05 ~ '*'
|
|
||||||
, TRUE ~ 'ns'))
|
|
||||||
# add an extra column for p_bon_signif
|
|
||||||
combined_unpaired_stats$p_bon_signif = combined_unpaired_stats$p_adj_bonferroni
|
|
||||||
# add appropriate symbols for p_bon_signif
|
|
||||||
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, p_bon_signif = case_when(p_bon_signif == 0.05 ~ "."
|
|
||||||
, p_bon_signif <=0.0001 ~ '****'
|
|
||||||
, p_bon_signif <=0.001 ~ '***'
|
|
||||||
, p_bon_signif <=0.01 ~ '**'
|
|
||||||
, p_bon_signif <0.05 ~ '*'
|
|
||||||
, TRUE ~ 'ns'))
|
|
||||||
# reorder columns
|
|
||||||
print("preparing to reorder columns...")
|
|
||||||
colnames(combined_unpaired_stats)
|
|
||||||
my_col_order2 = c("mediator"
|
|
||||||
, "timepoint"
|
|
||||||
, "sample_type"
|
|
||||||
, "n_obs"
|
|
||||||
, "n_obs_complete"
|
|
||||||
, "group1"
|
|
||||||
, "group2"
|
|
||||||
, "method"
|
|
||||||
, "p"
|
|
||||||
, "p.format"
|
|
||||||
, "p.signif"
|
|
||||||
, "p.adj"
|
|
||||||
, "padjust_signif"
|
|
||||||
, "p_adj_bonferroni"
|
|
||||||
, "p_bon_signif")
|
|
||||||
|
|
||||||
if( length(my_col_order2) == ncol(combined_unpaired_stats) && (all(my_col_order2%in%colnames(combined_unpaired_stats))) ){
|
|
||||||
print("PASS: Reordering columns...")
|
|
||||||
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
|
|
||||||
print("Successful: column reordering")
|
|
||||||
print("formatted df called:'combined_unpaired_stats_f'")
|
|
||||||
cat('\nformatted df has the following dimensions\n')
|
|
||||||
print(dim(combined_unpaired_stats_f ))
|
|
||||||
} else{
|
|
||||||
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
|
|
||||||
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
|
|
||||||
, "\nGot:", length(my_col_order2)))
|
|
||||||
quit()
|
|
||||||
}
|
|
||||||
# assign nice column names like replace "." with "_"
|
|
||||||
colnames(combined_unpaired_stats_f) = c("mediator"
|
|
||||||
, "timepoint"
|
|
||||||
, "sample_type"
|
|
||||||
, "n_obs"
|
|
||||||
, "n_obs_complete"
|
|
||||||
, "group1"
|
|
||||||
, "group2"
|
|
||||||
, "method"
|
|
||||||
, "p"
|
|
||||||
, "p_format"
|
|
||||||
, "p_signif"
|
|
||||||
, paste0("p_adj_fdr_", my_adjust_method)
|
|
||||||
, paste0("p_", my_adjust_method, "_signif")
|
|
||||||
, "p_adj_bonferroni"
|
|
||||||
, "p_bon_signif")
|
|
||||||
|
|
||||||
colnames(combined_unpaired_stats_f)
|
|
||||||
#---------------
|
|
||||||
# quick summary
|
|
||||||
#---------------
|
|
||||||
# count how many meds are significant
|
|
||||||
n_sig = length(combined_unpaired_stats_f$mediator[combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)])
|
|
||||||
sig_meds = combined_unpaired_stats_f[(combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)),]
|
|
||||||
|
|
||||||
sig_meds$med_time = paste0(sig_meds$mediator, "@", sig_meds$timepoint)
|
|
||||||
|
|
||||||
cat("\nTotal no. of statistically significant mediators in", toupper(my_sample_type)
|
|
||||||
, "are:", n_sig
|
|
||||||
, "\nThese are:", sig_meds$med_time)
|
|
||||||
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
#******************
|
|
||||||
# write output file
|
|
||||||
#******************
|
|
||||||
cat("\nUNpaired stats for groups will be:", flu_stats_time_unpaired_na)
|
|
||||||
#write.csv(combined_unpaired_stats_f, flu_stats_time_unpaired_na, row.names = FALSE)
|
|
|
@ -1,60 +0,0 @@
|
||||||
#!/usr/bin/Rscript
|
|
||||||
getwd()
|
|
||||||
setwd("~/git/mosaic_2020/")
|
|
||||||
getwd()
|
|
||||||
############################################################
|
|
||||||
# TASK: boxplots at T1
|
|
||||||
# FIXME: currently not rendering, problem with NAs for stats?
|
|
||||||
############################################################
|
|
||||||
|
|
||||||
#=============
|
|
||||||
# Input
|
|
||||||
#=============
|
|
||||||
source("data_extraction_formatting_non_asthmatics.R")
|
|
||||||
|
|
||||||
# check: adult variable and age variable discrepancy!
|
|
||||||
metadata_all$mosaic[metadata_all$adult==1 & metadata_all$age<=18]
|
|
||||||
|
|
||||||
#===============================
|
|
||||||
# data assignment for plots
|
|
||||||
#================================
|
|
||||||
#-----------
|
|
||||||
# npa
|
|
||||||
#-----------
|
|
||||||
wf_fp_npa = npa_wf[npa_wf$flustat == 1,]
|
|
||||||
lf_fp_npa = npa_lf[npa_lf$flustat == 1,]
|
|
||||||
lf_fp_npa$timepoint = paste0("t", lf_fp_npa$timepoint)
|
|
||||||
lf_fp_npa$timepoint = as.factor(lf_fp_npa$timepoint)
|
|
||||||
lf_fp_npa$obesity = as.factor(lf_fp_npa$obesity)
|
|
||||||
|
|
||||||
table(lf_fp_npa$mediator)
|
|
||||||
head(lf_fp_npa$value[lf_fp_npa$mediator == "vitd"])
|
|
||||||
lf_fp_npa = lf_fp_npa[!lf_fp_npa$mediator == "vitd",]
|
|
||||||
table(lf_fp_npa$mediator)
|
|
||||||
|
|
||||||
#-----------
|
|
||||||
# sam
|
|
||||||
#-----------
|
|
||||||
wf_fp_sam = sam_wf[sam_wf$flustat == 1,]
|
|
||||||
lf_fp_sam = sam_lf[sam_lf$flustat == 1,]
|
|
||||||
lf_fp_sam$timepoint = paste0("t", lf_fp_sam$timepoint)
|
|
||||||
lf_fp_sam$timepoint = as.factor(lf_fp_sam$timepoint)
|
|
||||||
lf_fp_sam$obesity = as.factor(lf_fp_sam$obesity)
|
|
||||||
|
|
||||||
table(lf_fp_sam$mediator)
|
|
||||||
head(lf_fp_sam$value[lf_fp_sam$mediator == "vitd"])
|
|
||||||
lf_fp_sam = lf_fp_sam[!lf_fp_sam$mediator == "vitd",]
|
|
||||||
table(lf_fp_sam$mediator)
|
|
||||||
|
|
||||||
#-----------
|
|
||||||
# serum
|
|
||||||
#-----------
|
|
||||||
wf_fp_serum = serum_wf[serum_wf$flustat == 1,]
|
|
||||||
lf_fp_serum = serum_lf[serum_lf$flustat == 1,]
|
|
||||||
lf_fp_serum$timepoint = paste0("t", lf_fp_serum$timepoint)
|
|
||||||
lf_fp_serum$timepoint = as.factor(lf_fp_serum$timepoint)
|
|
||||||
lf_fp_serum$obesity = as.factor(lf_fp_serum$obesity)
|
|
||||||
|
|
||||||
head(lf_fp_sam$value[lf_fp_serum$mediator == "vitd"])
|
|
||||||
########################################################################
|
|
||||||
|
|
26
read_data.R
26
read_data.R
|
@ -7,6 +7,8 @@ getwd()
|
||||||
########################################################################
|
########################################################################
|
||||||
# load libraries, packages and local imports
|
# load libraries, packages and local imports
|
||||||
source("Header_TT.R")
|
source("Header_TT.R")
|
||||||
|
source("colnames_clinical_meds.R")
|
||||||
|
|
||||||
########################################################################
|
########################################################################
|
||||||
maindir = "~/git/mosaic_2020/"
|
maindir = "~/git/mosaic_2020/"
|
||||||
outdir = paste0(maindir, "output/")
|
outdir = paste0(maindir, "output/")
|
||||||
|
@ -15,6 +17,12 @@ ifelse(!dir.exists(outdir), dir.create(outdir), FALSE)
|
||||||
outdir_stats = paste0(maindir, "output/stats/")
|
outdir_stats = paste0(maindir, "output/stats/")
|
||||||
ifelse(!dir.exists(outdir_stats), dir.create(outdir_stats), FALSE)
|
ifelse(!dir.exists(outdir_stats), dir.create(outdir_stats), FALSE)
|
||||||
|
|
||||||
|
outdir_stats_na = paste0(maindir, "output/stats/non_asthmatics/")
|
||||||
|
ifelse(!dir.exists(outdir_stats_na), dir.create(outdir_stats_na), FALSE)
|
||||||
|
|
||||||
|
outdir_stats_ns = paste0(maindir, "output/stats/non_severe/")
|
||||||
|
ifelse(!dir.exists(outdir_stats_ns), dir.create(outdir_stats_ns), FALSE)
|
||||||
|
|
||||||
outdir_plots = paste0(maindir, "output/plots/")
|
outdir_plots = paste0(maindir, "output/plots/")
|
||||||
ifelse(!dir.exists(outdir_plots), dir.create(outdir_plots), FALSE)
|
ifelse(!dir.exists(outdir_plots), dir.create(outdir_plots), FALSE)
|
||||||
########################################################################
|
########################################################################
|
||||||
|
@ -26,22 +34,22 @@ all_df <- read.csv("/home/backup/MOSAIC/MEDIATOR_Data/master_file/Mosaic_master_
|
||||||
, fileEncoding = 'latin1')
|
, fileEncoding = 'latin1')
|
||||||
|
|
||||||
# meta data columns
|
# meta data columns
|
||||||
meta_data_cols = c("mosaic", "gender", "age"
|
#meta_data_cols = c("mosaic", "gender", "age"
|
||||||
, "adult"
|
# , "adult"
|
||||||
, "flustat", "type"
|
# , "flustat", "type"
|
||||||
, "obesity"
|
# , "obesity"
|
||||||
#, "obese2"
|
#, "obese2"
|
||||||
#, "height", "height_unit"
|
#, "height", "height_unit"
|
||||||
#, "weight", "weight_unit"
|
#, "weight", "weight_unit"
|
||||||
#, "ia_height_ftin", "ia_height_m", "ia_weight"
|
#, "ia_height_ftin", "ia_height_m", "ia_weight"
|
||||||
#, "visual_est_bmi", "bmi_rating"
|
#, "visual_est_bmi", "bmi_rating"
|
||||||
)
|
# )
|
||||||
|
|
||||||
# check if these columns to select are present in the data
|
# check if these columns to select are present in the data
|
||||||
meta_data_cols%in%colnames(all_df)
|
meta_clinical_cols%in%colnames(all_df)
|
||||||
all(meta_data_cols%in%colnames(all_df))
|
if ( all(meta_clinical_cols%in%colnames(all_df)) ){
|
||||||
|
metadata_all = all_df[, meta_clinical_cols]
|
||||||
metadata_all = all_df[, meta_data_cols]
|
}
|
||||||
|
|
||||||
#==============
|
#==============
|
||||||
# adult patients
|
# adult patients
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue