added unpaired stats for asthma and severe for sam, serum and npa

This commit is contained in:
Tanushree Tunstall 2020-12-08 13:00:17 +00:00
parent 9acc36c8de
commit 28a356fc19
8 changed files with 2741 additions and 0 deletions

183
asthma/check_stats.R Executable file
View file

@ -0,0 +1,183 @@
#!/usr/bin/Rscript
getwd()
setwd("~/git/mosaic_2020/")
getwd()
########################################################################
# TASK: check stats
########################################################################
# load libraries, packages and local imports
source("Header_TT.R")
#=============
# Input
#=============
source("data_extraction_mediators.R")
#source("read_data.R")
########################################################################
#=============
# Data extraction for non-severe
#=============
table(fp_adults_ics$asthma)
table(fp_adults_ics$obesity)
df = fp_adults_ics[fp_adults_ics$asthma == 1,]
table(df$obesity)
df_ob = df[df$obesity == 1,]
df_nob = df[df$obesity == 0,]
rm(npa_lf, npa_wf, sam_lf, sam_wf, serum_lf, serum_wf, fp_adults_ics)
#============
# npa
#============
# il8: t2
wilcox.test(df_ob$il8_serum2, df_nob$il8_serum2)
wilcox_test(il8_serum2 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il8_serum2)
na_c = sum(is.na(foo$df.il8_serum2))
nrow(df) - na_c
tapply(df$il8_serum2, df$obesity, median, na.rm = T)
tapply(df$il8_serum2, df$obesity, summary, na.rm = T)
# il8_2: t2
wilcox.test(df_ob$il8_2_serum2, df_nob$il8_2_serum2)
wilcox_test(il8_2_serum2 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il8_2_serum2)
na_c = sum(is.na(foo$df.il8_2_serum2))
nrow(df) - na_c
tapply(df$il8_2_serum2, df$obesity, median, na.rm = T)
tapply(df$il8_2_serum2, df$obesity, summary, na.rm = T)
# il4: t3
wilcox.test(df_ob$il4_serum3, df_nob$il4_serum3)
wilcox_test(il4_serum3 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il4_serum3)
na_c = sum(is.na(foo$df.il4_serum3))
nrow(df) - na_c
tapply(df$il4_serum3, df$obesity, median, na.rm = T)
tapply(df$il4_serum3, df$obesity, summary, na.rm = T)
# ifnb: t3
wilcox.test(df_ob$ifnb_serum3, df_nob$ifnb_serum3)
wilcox_test(ifnb_serum3 ~ obesity, data = df)
foo = data.frame(df$obesity, df$ifnb_serum3)
na_c = sum(is.na(foo$df.ifnb_serum3))
nrow(df) - na_c
tapply(df$ifnb_serum3, df$obesity, median, na.rm = T)
tapply(df$ifnb_serum3, df$obesity, summary, na.rm = T)
#============
# sam
#============
# tarc: t3
wilcox.test(df_ob$tarc_sam3
, df_nob$tarc_sam3)
foo = data.frame(df$obesity, df$tarc_sam3)
na_c = sum(is.na(foo$df.tarc_sam3))
nrow(df) - na_c
tapply(df$tarc_sam3, df$obesity, median, na.rm = T)
# il13: t3
wilcox.test(df_ob$il13_sam3
, df_nob$il13_sam3)
foo = data.frame(df$obesity, df$il13_sam3)
na_c = sum(is.na(foo$df.il13_sam3))
nrow(df) - na_c
tapply(df$il13_sam3, df$obesity, median, na.rm = T)
# eotaxin: t1
wilcox.test(df_ob$eotaxin_sam1
, df_nob$eotaxin_sam1)
foo = data.frame(df$obesity, df$eotaxin_sam1)
na_c = sum(is.na(foo$df.eotaxin_sam1))
nrow(df) - na_c
tapply(df$eotaxin_sam1, df$obesity, median, na.rm = T)
#============
# serum
#============
# ifna2a: t1
wilcox.test(df_ob$ifna2a_serum1,
df_nob$ifna2a_serum1)
foo = data.frame(df$obesity, df$ifna2a_serum1)
na_c = sum(is.na(foo$df.ifna2a_serum1))
nrow(df) - na_c
tapply(df$ifna2a_serum1, df$obesity, median, na.rm = T)
# mip17: t1
wilcox.test(df_ob$mip17_serum1,
df_nob$mip17_serum1)
foo = data.frame(df$obesity, df$mip17_serum1)
na_c = sum(is.na(foo$df.mip17_serum1))
nrow(df) - na_c
tapply(df$mip17_serum1, df$obesity, median, na.rm = T)
# il1: t1
wilcox.test(df_ob$il1_serum1
, df_nob$il1_serum1)
foo = data.frame(df$obesity, df$il1_serum1)
na_c = sum(is.na(foo$df.il1_serum1))
nrow(df) - na_c
tapply(df$il1_serum1, df$obesity, median, na.rm = T)
tapply(df$il1_serum1, df$obesity, summary, na.rm = T)
boxplot(df_ob$il1_serum1, df_nob$il1_serum1)
# ifna2a: t2
wilcox.test(df_ob$ifna2a_serum2,
df_nob$ifna2a_serum2)
foo = data.frame(df$obesity, df$ifna2a_serum2)
na_c = sum(is.na(foo$df.ifna2a_serum2))
nrow(df) - na_c
tapply(df$ifna2a_serum2, df$obesity, median, na.rm = T)
# ifna2a: t3
wilcox.test(df_ob$ifna2a_serum3,
df_nob$ifna2a_serum3)
foo = data.frame(df$obesity, df$ifna2a_serum3)
na_c = sum(is.na(foo$df.ifna2a_serum3))
nrow(df) - na_c
tapply(df$ifna2a_serum3, df$obesity, median, na.rm = T)
# ifnb: t3
wilcox.test(df_ob$ifnb_serum3
, df_nob$ifnb_serum3)
foo = data.frame(df$obesity, df$ifnb_serum3)
na_c = sum(is.na(foo$df.ifnb_serum3))
nrow(df) - na_c
tapply(df$ifnb_serum3, df$obesity, median, na.rm = T)

386
asthma/flu_a_stats_unpaired_npa.R Executable file
View file

@ -0,0 +1,386 @@
#!/usr/bin/Rscript
getwd()
setwd("~/git/mosaic_2020/")
getwd()
############################################################
# TASK: unpaired (time) analysis of mediators:
# sample type: NPA
# data: Flu positive adult patients
# group: obesity
############################################################
my_sample_type = "npa"
#=============
# Input
#=============
#source("data_extraction_mediators.R")
source("plot_data_a.R")
# check: copd and asthma conflict
table(fp_adults_ics$ia_exac_copd==1 & fp_adults_ics$asthma == 1)
#=============
# Output
#=============
outfile_name = paste0("flu_stats_time_unpaired_a_", my_sample_type, ".csv")
flu_stats_time_unpaired = paste0(outdir_stats_a, outfile_name)
flu_stats_time_unpaired
# quick checks
table(wf_fp_npa$T1_resp_score)
table(lf_fp_npa$mediator, lf_fp_npa$timepoint, lf_fp_npa$T1_resp_score)
table(wf_fp_npa$obesity)
#===============================
# data assignment for stats
#================================
wf = wf_fp_npa
lf = lf_fp_npa
identical(wf, wf_fp_npa)
identical(lf, lf_fp_npa)
########################################################################
# clear variables
rm(lf_fp_sam, lf_fp_serum
, wf_fp_sam, wf_fp_serum)
# sanity checks
table(lf$timepoint)
length(unique(lf$mosaic))
########################################################################
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis
# with correction
########################################################################
# with adjustment: fdr and BH are identical
my_adjust_method = "BH"
#==============
# unpaired: t1
#==============
lf_t1 = lf[lf$timepoint == "t1",]
sum(is.na(lf_t1$value))
foo = lf_t1[which(is.na(lf_t1$value)),]
#ci = which(is.na(lf_t1$value))
#lf_t1_comp = lf_t1[-ci,]
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
stats_un_t1 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t1
, data = lf_t1_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
# add timepoint and convert to df
stats_un_t1$timepoint = "t1"
stats_un_t1 = as.data.frame(stats_un_t1)
class(stats_un_t1)
#----------------------------------------
# calculate n_obs for each mediator: t1
#----------------------------------------
#n_t1 = data.frame(table(lf_t1_comp$mediator))
n_t1_all = data.frame(table(lf_t1$mediator))
colnames(n_t1_all) = c("mediator", "n_obs")
n_t1_all$mediator = as.character(n_t1_all$mediator)
n_t1_comp = data.frame(table(lf_t1_comp$mediator))
colnames(n_t1_comp) = c("mediator", "n_obs_complete")
n_t1_comp$mediator = as.character(n_t1_comp$mediator)
merge_cols = intersect(names(n_t1_all), names(n_t1_comp)); merge_cols
n_t1= merge(n_t1_all, n_t1_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#===================================
merging_cols = intersect(names(stats_un_t1), names(n_t1)); merging_cols
if (all(n_t1$mediator%in%stats_un_t1$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}else{
nf = n_t1$mediator[!n_t1$mediator%in%stats_un_t1$mediator]
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}
# add bonferroni adjustment as well
stats_un_t1$p_adj_bonferroni = p.adjust(stats_un_t1$p, method = "bonferroni")
rm(n_t1)
rm(lf_t1_comp)
#==============
# unpaired: t2
#==============
lf_t2 = lf[lf$timepoint == "t2",]
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
stats_un_t2 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t2
, data = lf_t2_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t2$timepoint = "t2"
stats_un_t2 = as.data.frame(stats_un_t2)
class(stats_un_t2)
#----------------------------------------
# calculate n_obs for each mediator: t2
#----------------------------------------
#n_t2 = data.frame(table(lf_t2_comp$mediator))
n_t2_all = data.frame(table(lf_t2$mediator))
colnames(n_t2_all) = c("mediator", "n_obs")
n_t2_all$mediator = as.character(n_t2_all$mediator)
n_t2_comp = data.frame(table(lf_t2_comp$mediator))
colnames(n_t2_comp) = c("mediator", "n_obs_complete")
n_t2_comp$mediator = as.character(n_t2_comp$mediator)
merge_cols = intersect(names(n_t2_all), names(n_t2_comp)); merge_cols
n_t2= merge(n_t2_all, n_t2_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t2), names(n_t2)); merging_cols
if (all(n_t2$mediator%in%stats_un_t2$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}else{
nf = n_t2$mediator[!n_t2$mediator%in%stats_un_t2$mediator]
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}
# add bonferroni adjustment as well
stats_un_t2$p_adj_bonferroni = p.adjust(stats_un_t2$p, method = "bonferroni")
rm(n_t2)
rm(lf_t2_comp)
#==============
# unpaired: t3
#==============
lf_t3 = lf[lf$timepoint == "t3",]
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
stats_un_t3 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t3
, data = lf_t3_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t3$timepoint = "t3"
stats_un_t3 = as.data.frame(stats_un_t3)
class(stats_un_t3)
#----------------------------------------
# calculate n_obs for each mediator: t3
#----------------------------------------
#n_t3 = data.frame(table(lf_t3_comp$mediator))
n_t3_all = data.frame(table(lf_t3$mediator))
colnames(n_t3_all) = c("mediator", "n_obs")
n_t3_all$mediator = as.character(n_t3_all$mediator)
n_t3_comp = data.frame(table(lf_t3_comp$mediator))
colnames(n_t3_comp) = c("mediator", "n_obs_complete")
n_t3_comp$mediator = as.character(n_t3_comp$mediator)
merge_cols = intersect(names(n_t3_all), names(n_t3_comp)); merge_cols
n_t3= merge(n_t3_all, n_t3_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t3), names(n_t3)); merging_cols
if (all(n_t3$mediator%in%stats_un_t3$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}else{
nf = n_t3$mediator[!n_t3$mediator%in%stats_un_t3$mediator]
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}
# add bonferroni adjustment as well
stats_un_t3$p_adj_bonferroni = p.adjust(stats_un_t3$p, method = "bonferroni")
rm(n_t3)
rm(lf_t3_comp)
########################################################################
#==============
# Rbind these dfs
#==============
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
n_dfs = 3
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
expected_rows = nrow(stats_un_t1) * n_dfs
expected_cols = ncol(stats_un_t1)
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
}else{
cat("FAIL: dfs have different no. of rows and cols"
, "\nCheck harcoded value of n_dfs"
, "\nexpected_rows and cols could not be generated")
quit()
}
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
print("PASS: colnames match. Rbind the 3 dfs...")
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
} else{
cat("FAIL: cannot combined dfs. Colnames don't match!")
quit()
}
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
cat("PASS: combined_df has expected dimension"
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
}else{
cat("FAIL: combined_df dimension mismatch")
quit()
}
#######################################################################
#=================
# formatting df
#=================
# delete: unnecessary column
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
# add sample_type
cat("Adding sample type info as a column", my_sample_type, "...")
combined_unpaired_stats$sample_type = my_sample_type
# add: reflect stats method correctly i.e paired or unpaired
# incase there are NA due to LLODs, the gsub won't work!
#combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
combined_unpaired_stats$method = "wilcoxon unpaired"
combined_unpaired_stats$method
# add an extra column for padjust_signif: my_adjust_method
combined_unpaired_stats$padjust_signif = combined_unpaired_stats$p.adj
# add appropriate symbols for padjust_signif: my_adjust_method
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
, padjust_signif <=0.0001 ~ '****'
, padjust_signif <=0.001 ~ '***'
, padjust_signif <=0.01 ~ '**'
, padjust_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# add an extra column for p_bon_signif
combined_unpaired_stats$p_bon_signif = combined_unpaired_stats$p_adj_bonferroni
# add appropriate symbols for p_bon_signif
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, p_bon_signif = case_when(p_bon_signif == 0.05 ~ "."
, p_bon_signif <=0.0001 ~ '****'
, p_bon_signif <=0.001 ~ '***'
, p_bon_signif <=0.01 ~ '**'
, p_bon_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# reorder columns
print("preparing to reorder columns...")
colnames(combined_unpaired_stats)
my_col_order2 = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p.format"
, "p.signif"
, "p.adj"
, "padjust_signif"
, "p_adj_bonferroni"
, "p_bon_signif")
if( length(my_col_order2) == ncol(combined_unpaired_stats) && (all(my_col_order2%in%colnames(combined_unpaired_stats))) ){
print("PASS: Reordering columns...")
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
print("Successful: column reordering")
print("formatted df called:'combined_unpaired_stats_f'")
cat('\nformatted df has the following dimensions\n')
print(dim(combined_unpaired_stats_f ))
} else{
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
, "\nGot:", length(my_col_order2)))
quit()
}
# assign nice column names like replace "." with "_"
colnames(combined_unpaired_stats_f) = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p_format"
, "p_signif"
, paste0("p_adj_fdr_", my_adjust_method)
, paste0("p_", my_adjust_method, "_signif")
, "p_adj_bonferroni"
, "p_bon_signif")
colnames(combined_unpaired_stats_f)
#---------------
# quick summary
#---------------
# count how many meds are significant
n_sig = length(combined_unpaired_stats_f$mediator[combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)])
sig_meds = combined_unpaired_stats_f[(combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)),]
sig_meds$med_time = paste0(sig_meds$mediator, "@", sig_meds$timepoint)
cat("\nTotal no. of statistically significant mediators in", toupper(my_sample_type)
, "are:", n_sig
, "\nThese are:", sig_meds$med_time)
########################################################################
#******************
# write output file
#******************
cat("\nUNpaired stats for groups will be:", flu_stats_time_unpaired)
write.csv(combined_unpaired_stats_f, flu_stats_time_unpaired, row.names = FALSE)

395
asthma/flu_a_stats_unpaired_sam.R Executable file
View file

@ -0,0 +1,395 @@
#!/usr/bin/Rscript
getwd()
setwd("~/git/mosaic_2020/")
getwd()
############################################################
# TASK: unpaired (time) analysis of mediators:
# sample type: SAM
# data: Flu positive adult patients
# group: obesity
############################################################
my_sample_type = "sam"
#=============
# Input
#=============
#source("data_extraction_mediators.R")
source("plot_data_a.R")
# check: copd and asthma conflict
table(fp_adults_ics$ia_exac_copd==1 & fp_adults_ics$asthma == 1)
#=============
# Output
#=============
outfile_name = paste0("flu_stats_time_unpaired_a_", my_sample_type, ".csv")
flu_stats_time_unpaired = paste0(outdir_stats_a, outfile_name)
flu_stats_time_unpaired
# quick checks
table(wf_fp_sam$T1_resp_score)
table(lf_fp_sam$mediator, lf_fp_sam$timepoint, lf_fp_sam$T1_resp_score)
table(wf_fp_sam$obesity)
#===============================
# data assignment for stats
#================================
wf = wf_fp_sam
lf = lf_fp_sam
identical(wf, wf_fp_sam)
identical(lf, lf_fp_sam)
########################################################################
# clear variables
rm(lf_fp_npa, lf_fp_serum
, wf_fp_npa, wf_fp_serum)
# sanity checks
table(lf$timepoint)
length(unique(lf$mosaic))
#if (table(lf$flustat) == table(sam_lf$flustat)[[2]]){
# cat("Analysing Flu positive patients for:", my_sample_type)
#}else{
# cat("FAIL: problem with subsetting data for:", my_sample_type)
# quit()
#}
########################################################################
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis
# with correction
#######################################################################
# with adjustment: fdr and BH are identical
my_adjust_method = "BH"
#==============
# unpaired: t1
#==============
lf_t1 = lf[lf$timepoint == "t1",]
sum(is.na(lf_t1$value))
foo = lf_t1[which(is.na(lf_t1$value)),]
#ci = which(is.na(lf_t1$value))
#lf_t1_comp = lf_t1[-ci,]
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
stats_un_t1 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t1
, data = lf_t1_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
# add timepoint and convert to df
stats_un_t1$timepoint = "t1"
stats_un_t1 = as.data.frame(stats_un_t1)
class(stats_un_t1)
#----------------------------------------
# calculate n_obs for each mediator: t1
#----------------------------------------
#n_t1 = data.frame(table(lf_t1_comp$mediator))
n_t1_all = data.frame(table(lf_t1$mediator))
colnames(n_t1_all) = c("mediator", "n_obs")
n_t1_all$mediator = as.character(n_t1_all$mediator)
n_t1_comp = data.frame(table(lf_t1_comp$mediator))
colnames(n_t1_comp) = c("mediator", "n_obs_complete")
n_t1_comp$mediator = as.character(n_t1_comp$mediator)
merge_cols = intersect(names(n_t1_all), names(n_t1_comp)); merge_cols
n_t1= merge(n_t1_all, n_t1_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#===================================
merging_cols = intersect(names(stats_un_t1), names(n_t1)); merging_cols
if (all(n_t1$mediator%in%stats_un_t1$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}else{
nf = n_t1$mediator[!n_t1$mediator%in%stats_un_t1$mediator]
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}
# add bonferroni adjustment as well
stats_un_t1$p_adj_bonferroni = p.adjust(stats_un_t1$p, method = "bonferroni")
rm(n_t1)
rm(lf_t1_comp)
#==============
# unpaired: t2
#==============
lf_t2 = lf[lf$timepoint == "t2",]
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
stats_un_t2 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t2
, data = lf_t2_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t2$timepoint = "t2"
stats_un_t2 = as.data.frame(stats_un_t2)
class(stats_un_t2)
#----------------------------------------
# calculate n_obs for each mediator: t2
#----------------------------------------
#n_t2 = data.frame(table(lf_t2_comp$mediator))
n_t2_all = data.frame(table(lf_t2$mediator))
colnames(n_t2_all) = c("mediator", "n_obs")
n_t2_all$mediator = as.character(n_t2_all$mediator)
n_t2_comp = data.frame(table(lf_t2_comp$mediator))
colnames(n_t2_comp) = c("mediator", "n_obs_complete")
n_t2_comp$mediator = as.character(n_t2_comp$mediator)
merge_cols = intersect(names(n_t2_all), names(n_t2_comp)); merge_cols
n_t2= merge(n_t2_all, n_t2_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#===================================
merging_cols = intersect(names(stats_un_t2), names(n_t2)); merging_cols
if (all(n_t2$mediator%in%stats_un_t2$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}else{
nf = n_t2$mediator[!n_t2$mediator%in%stats_un_t2$mediator]
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}
# add bonferroni adjustment as well
stats_un_t2$p_adj_bonferroni = p.adjust(stats_un_t2$p, method = "bonferroni")
rm(n_t2)
rm(lf_t2_comp)
#==============
# unpaired: t3
#==============
lf_t3 = lf[lf$timepoint == "t3",]
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
stats_un_t3 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t3
, data = lf_t3_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t3$timepoint = "t3"
stats_un_t3 = as.data.frame(stats_un_t3)
class(stats_un_t3)
#----------------------------------------
# calculate n_obs for each mediator: t3
#----------------------------------------
#n_t3 = data.frame(table(lf_t3_comp$mediator))
n_t3_all = data.frame(table(lf_t3$mediator))
colnames(n_t3_all) = c("mediator", "n_obs")
n_t3_all$mediator = as.character(n_t3_all$mediator)
n_t3_comp = data.frame(table(lf_t3_comp$mediator))
colnames(n_t3_comp) = c("mediator", "n_obs_complete")
n_t3_comp$mediator = as.character(n_t3_comp$mediator)
merge_cols = intersect(names(n_t3_all), names(n_t3_comp)); merge_cols
n_t3= merge(n_t3_all, n_t3_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t3), names(n_t3)); merging_cols
if (all(n_t3$mediator%in%stats_un_t3$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}else{
nf = n_t3$mediator[!n_t3$mediator%in%stats_un_t3$mediator]
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}
# check: satisfied!!!!
# FIXME: supply the col name automatically?
wilcox.test(wf$ifna2a_sam3[wf$obesity == 1], wf$ifna2a_sam3[wf$obesity == 0])
# add bonferroni adjustment as well
stats_un_t3$p_adj_bonferroni = p.adjust(stats_un_t3$p, method = "bonferroni")
rm(n_t3)
rm(lf_t3_comp)
########################################################################
#=================
# Rbind these dfs
#=================
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
n_dfs = 3
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
expected_rows = nrow(stats_un_t1) * n_dfs
expected_cols = ncol(stats_un_t1)
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
}else{
cat("FAIL: dfs have different no. of rows and cols"
, "\nCheck harcoded value of n_dfs"
, "\nexpected_rows and cols could not be generated")
quit()
}
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
print("PASS: colnames match. Rbind the 3 dfs...")
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
} else{
cat("FAIL: cannot combined dfs. Colnames don't match!")
quit()
}
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
cat("PASS: combined_df has expected dimension"
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
}else{
cat("FAIL: combined_df dimension mismatch")
quit()
}
#######################################################################
#=================
# formatting df
#=================
# delete: unnecessary column
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
# add sample_type
cat("Adding sample type info as a column", my_sample_type, "...")
combined_unpaired_stats$sample_type = my_sample_type
# add: reflect stats method correctly i.e paired or unpaired
# incase there are NA due to LLODs, the gsub won't work!
#combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
combined_unpaired_stats$method = "wilcoxon unpaired"
combined_unpaired_stats$method
# add an extra column for padjust_signif: my_adjust_method
combined_unpaired_stats$padjust_signif = combined_unpaired_stats$p.adj
# add appropriate symbols for padjust_signif: my_adjust_method
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
, padjust_signif <=0.0001 ~ '****'
, padjust_signif <=0.001 ~ '***'
, padjust_signif <=0.01 ~ '**'
, padjust_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# add an extra column for p_bon_signif
combined_unpaired_stats$p_bon_signif = combined_unpaired_stats$p_adj_bonferroni
# add appropriate symbols for p_bon_signif
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, p_bon_signif = case_when(p_bon_signif == 0.05 ~ "."
, p_bon_signif <=0.0001 ~ '****'
, p_bon_signif <=0.001 ~ '***'
, p_bon_signif <=0.01 ~ '**'
, p_bon_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# reorder columns
print("preparing to reorder columns...")
colnames(combined_unpaired_stats)
my_col_order2 = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p.format"
, "p.signif"
, "p.adj"
, "padjust_signif"
, "p_adj_bonferroni"
, "p_bon_signif")
if( length(my_col_order2) == ncol(combined_unpaired_stats) && (all(my_col_order2%in%colnames(combined_unpaired_stats))) ){
print("PASS: Reordering columns...")
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
print("Successful: column reordering")
print("formatted df called:'combined_unpaired_stats_f'")
cat('\nformatted df has the following dimensions\n')
print(dim(combined_unpaired_stats_f ))
} else{
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
, "\nGot:", length(my_col_order2)))
quit()
}
# assign nice column names like replace "." with "_"
colnames(combined_unpaired_stats_f) = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p_format"
, "p_signif"
, paste0("p_adj_fdr_", my_adjust_method)
, paste0("p_", my_adjust_method, "_signif")
, "p_adj_bonferroni"
, "p_bon_signif")
colnames(combined_unpaired_stats_f)
#---------------
# quick summary
#---------------
# count how many meds are significant
n_sig = length(combined_unpaired_stats_f$mediator[combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)])
sig_meds = combined_unpaired_stats_f[(combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)),]
sig_meds$med_time = paste0(sig_meds$mediator, "@", sig_meds$timepoint)
cat("\nTotal no. of statistically significant mediators in", toupper(my_sample_type)
, "are:", n_sig
, "\nThese are:", sig_meds$med_time)
#######################################################################
#******************
# write output file
#******************
cat("\nUNpaired stats for groups will be:", flu_stats_time_unpaired)
write.csv(combined_unpaired_stats_f, flu_stats_time_unpaired, row.names = FALSE)

View file

@ -0,0 +1,376 @@
#!/usr/bin/Rscript
getwd()
setwd("~/git/mosaic_2020/")
getwd()
############################################################
# TASK: unpaired (time) analysis of mediators: serum
############################################################
my_sample_type = "serum"
#=============
# Input
#=============
#source("data_extraction_mediators.R")
source("plot_data_a.R")
# check: copd and asthma conflict
table(fp_adults_ics$ia_exac_copd==1 & fp_adults_ics$asthma == 1)
#=============
# Output
#=============
outfile_name = paste0("flu_stats_time_unpaired_a_", my_sample_type, ".csv")
flu_stats_time_unpaired = paste0(outdir_stats_a, outfile_name)
flu_stats_time_unpaired
# quick checks
table(wf_fp_serum$T1_resp_score)
table(lf_fp_serum$mediator, lf_fp_npa$timepoint, lf_fp_npa$T1_resp_score)
table(wf_fp_serum$obesity)
#===============================
# data assignment for stats
#================================
wf = wf_fp_serum
lf = lf_fp_serum
identical(wf, wf_fp_serum)
identical(lf, lf_fp_serum)
########################################################################
# clear variables
rm(lf_fp_sam, lf_fp_npa
, wf_fp_sam, wf_fp_npa)
########################################################################
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis
# with correction
#######################################################################
# with adjustment: fdr and BH are identical
my_adjust_method = "BH"
#=============
# unpaired: t1
#==============
lf_t1 = lf[lf$timepoint == "t1",]
sum(is.na(lf_t1$value))
foo = lf_t1[which(is.na(lf_t1$value)),]
ci = which(is.na(lf_t1$value))
#lf_t1_comp = lf_t1[-ci,]
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
stats_un_t1 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t1
, data = lf_t1_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
# add timepoint and convert to df
stats_un_t1$timepoint = "t1"
stats_un_t1 = as.data.frame(stats_un_t1)
class(stats_un_t1)
#----------------------------------------
# calculate n_obs for each mediator: t1
#----------------------------------------
#n_t1 = data.frame(table(lf_t1_comp$mediator))
n_t1_all = data.frame(table(lf_t1$mediator))
colnames(n_t1_all) = c("mediator", "n_obs")
n_t1_all$mediator = as.character(n_t1_all$mediator)
n_t1_comp = data.frame(table(lf_t1_comp$mediator))
colnames(n_t1_comp) = c("mediator", "n_obs_complete")
n_t1_comp$mediator = as.character(n_t1_comp$mediator)
merge_cols = intersect(names(n_t1_all), names(n_t1_comp)); merge_cols
n_t1= merge(n_t1_all, n_t1_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t1), names(n_t1)); merging_cols
if (all(n_t1$mediator%in%stats_un_t1$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}else{
nf = n_t1$mediator[!n_t1$mediator%in%stats_un_t1$mediator]
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}
# add bonferroni adjustment as well
stats_un_t1$p_adj_bonferroni = p.adjust(stats_un_t1$p, method = "bonferroni")
rm(n_t1)
rm(lf_t1_comp)
#==============
# unpaired: t2
#==============
lf_t2 = lf[lf$timepoint == "t2",]
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
stats_un_t2 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t2
, data = lf_t2_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t2$timepoint = "t2"
stats_un_t2 = as.data.frame(stats_un_t2)
class(stats_un_t2)
#----------------------------------------
# calculate n_obs for each mediator: t2
#----------------------------------------
#n_t2 = data.frame(table(lf_t2_comp$mediator))
n_t2_all = data.frame(table(lf_t2$mediator))
colnames(n_t2_all) = c("mediator", "n_obs")
n_t2_all$mediator = as.character(n_t2_all$mediator)
n_t2_comp = data.frame(table(lf_t2_comp$mediator))
colnames(n_t2_comp) = c("mediator", "n_obs_complete")
n_t2_comp$mediator = as.character(n_t2_comp$mediator)
merge_cols = intersect(names(n_t2_all), names(n_t2_comp)); merge_cols
n_t2= merge(n_t2_all, n_t2_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t2), names(n_t2)); merging_cols
if (all(n_t2$mediator%in%stats_un_t2$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}else{
nf = n_t2$mediator[!n_t2$mediator%in%stats_un_t2$mediator]
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}
# add bonferroni adjustment as well
stats_un_t2$p_adj_bonferroni = p.adjust(stats_un_t2$p, method = "bonferroni")
rm(n_t2)
rm(lf_t2_comp)
#==============
# unpaired: t3
#==============
lf_t3 = lf[lf$timepoint == "t3",]
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
stats_un_t3 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t3
, data = lf_t3_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t3$timepoint = "t3"
stats_un_t3 = as.data.frame(stats_un_t3)
class(stats_un_t3)
#----------------------------------------
# calculate n_obs for each mediator: t3
#----------------------------------------
#n_t3 = data.frame(table(lf_t3_comp$mediator))
n_t3_all = data.frame(table(lf_t3$mediator))
colnames(n_t3_all) = c("mediator", "n_obs")
n_t3_all$mediator = as.character(n_t3_all$mediator)
n_t3_comp = data.frame(table(lf_t3_comp$mediator))
colnames(n_t3_comp) = c("mediator", "n_obs_complete")
n_t3_comp$mediator = as.character(n_t3_comp$mediator)
merge_cols = intersect(names(n_t3_all), names(n_t3_comp)); merge_cols
n_t3 = merge(n_t3_all, n_t3_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t3), names(n_t3)); merging_cols
if (all(n_t3$mediator%in%stats_un_t3$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}else{
nf = n_t3$mediator[!n_t3$mediator%in%stats_un_t3$mediator]
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}
# add bonferroni adjustment as well
stats_un_t3$p_adj_bonferroni = p.adjust(stats_un_t3$p, method = "bonferroni")
rm(n_t3)
rm(lf_t3_comp)
########################################################################
#==============
# Rbind these dfs
#==============
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
n_dfs = 3
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
expected_rows = nrow(stats_un_t1) * n_dfs
expected_cols = ncol(stats_un_t1)
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
}else{
cat("FAIL: dfs have different no. of rows and cols"
, "\nCheck harcoded value of n_dfs"
, "\nexpected_rows and cols could not be generated")
quit()
}
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
print("PASS: colnames match. Rbind the 3 dfs...")
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
} else{
cat("FAIL: cannot combined dfs. Colnames don't match!")
quit()
}
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
cat("PASS: combined_df has expected dimension"
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
}else{
cat("FAIL: combined_df dimension mismatch")
quit()
}
#######################################################################
#=================
# formatting df
#=================
# delete: unnecessary column
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
# add sample_type
cat("Adding sample type info as a column", my_sample_type, "...")
combined_unpaired_stats$sample_type = my_sample_type
# add: reflect stats method correctly i.e paired or unpaired
# incase there are NA due to LLODs, the gsub won't work!
#combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
combined_unpaired_stats$method = "wilcoxon unpaired"
combined_unpaired_stats$method
# add an extra column for padjust_signif: my_adjust_method
combined_unpaired_stats$padjust_signif = combined_unpaired_stats$p.adj
# add appropriate symbols for padjust_signif: my_adjust_method
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
, padjust_signif <=0.0001 ~ '****'
, padjust_signif <=0.001 ~ '***'
, padjust_signif <=0.01 ~ '**'
, padjust_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# add an extra column for p_bon_signif
combined_unpaired_stats$p_bon_signif = combined_unpaired_stats$p_adj_bonferroni
# add appropriate symbols for p_bon_signif
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, p_bon_signif = case_when(p_bon_signif == 0.05 ~ "."
, p_bon_signif <=0.0001 ~ '****'
, p_bon_signif <=0.001 ~ '***'
, p_bon_signif <=0.01 ~ '**'
, p_bon_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# reorder columns
print("preparing to reorder columns...")
colnames(combined_unpaired_stats)
my_col_order2 = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p.format"
, "p.signif"
, "p.adj"
, "padjust_signif"
, "p_adj_bonferroni"
, "p_bon_signif")
if( length(my_col_order2) == ncol(combined_unpaired_stats) && (all(my_col_order2%in%colnames(combined_unpaired_stats))) ){
print("PASS: Reordering columns...")
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
print("Successful: column reordering")
print("formatted df called:'combined_unpaired_stats_f'")
cat('\nformatted df has the following dimensions\n')
print(dim(combined_unpaired_stats_f ))
} else{
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
, "\nGot:", length(my_col_order2)))
quit()
}
# assign nice column names like replace "." with "_"
colnames(combined_unpaired_stats_f) = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p_format"
, "p_signif"
, paste0("p_adj_fdr_", my_adjust_method)
, paste0("p_", my_adjust_method, "_signif")
, "p_adj_bonferroni"
, "p_bon_signif")
colnames(combined_unpaired_stats_f)
#---------------
# quick summary
#---------------
# count how many meds are significant
n_sig = length(combined_unpaired_stats_f$mediator[combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)])
sig_meds = combined_unpaired_stats_f[(combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)),]
sig_meds$med_time = paste0(sig_meds$mediator, "@", sig_meds$timepoint)
cat("\nTotal no. of statistically significant mediators in", toupper(my_sample_type)
, "are:", n_sig
, "\nThese are:", sig_meds$med_time)
########################################################################
#******************
# write output file
#******************
cat("UNpaired stats for groups will be:", flu_stats_time_unpaired)
write.csv(combined_unpaired_stats_f, flu_stats_time_unpaired, row.names = FALSE)

244
severe/check_stats.R Executable file
View file

@ -0,0 +1,244 @@
#!/usr/bin/Rscript
getwd()
setwd("~/git/mosaic_2020/")
getwd()
########################################################################
# TASK: check stats
########################################################################
# load libraries, packages and local imports
source("Header_TT.R")
#=============
# Input
#=============
source("data_extraction_mediators.R")
#source("read_data.R")
########################################################################
#=============
# Data extraction for non-severe
#=============
table(fp_adults_ics$T1_resp_score)
table(fp_adults_ics$obesity)
df = fp_adults_ics[fp_adults_ics$T1_resp_score==3,]
table(df$obesity)
df_ob = df[df$obesity == 1,]
df_nob = df[df$obesity == 0,]
rm(npa_lf, npa_wf, sam_lf, sam_wf, serum_lf, serum_wf, fp_adults_ics)
#============
# npa
#============
# eotaxin: t1
wilcox.test(df_ob$eotaxin_npa1, df_nob$eotaxin_npa1)
wilcox_test(eotaxin_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$eotaxin_npa1)
na_c = sum(is.na(foo$df.eotaxin_npa1))
nrow(df) - na_c
tapply(df$eotaxin_npa1, df$obesity, median, na.rm = T)
tapply(df$eotaxin_npa1, df$obesity, summary, na.rm = T)
# eotaxin: t1
wilcox.test(df_ob$eotaxin3_npa1, df_nob$eotaxin3_npa1)
wilcox_test(eotaxin3_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$eotaxin3_npa1)
na_c = sum(is.na(foo$df.eotaxin3_npa1))
nrow(df) - na_c
tapply(df$eotaxin3_npa1, df$obesity, median, na.rm = T)
tapply(df$eotaxin3_npa1, df$obesity, summary, na.rm = T)
# il1: t1
wilcox.test(df_ob$il1_npa1, df_nob$il1_npa1)
wilcox_test(il1_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il1_npa1)
na_c = sum(is.na(foo$df.il1_npa1))
nrow(df) - na_c
tapply(df$il1_npa1, df$obesity, median, na.rm = T)
tapply(df$il1_npa1, df$obesity, summary, na.rm = T)
# il10: t1
wilcox.test(df_ob$il10_npa1, df_nob$il10_npa1)
wilcox_test(il10_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il10_npa1)
na_c = sum(is.na(foo$df.il10_npa1))
nrow(df) - na_c
tapply(df$il10_npa1, df$obesity, median, na.rm = T)
tapply(df$il10_npa1, df$obesity, summary, na.rm = T)
# il12p70: t1
wilcox.test(df_ob$il12p70_npa1, df_nob$il12p70_npa1)
wilcox_test(il12p70_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il12p70_npa1)
na_c = sum(is.na(foo$df.il12p70_npa1))
nrow(df) - na_c
tapply(df$il12p70_npa1, df$obesity, median, na.rm = T)
tapply(df$il12p70_npa1, df$obesity, summary, na.rm = T)
# il17: t1
wilcox.test(df_ob$il17_npa1, df_nob$il17_npa1)
wilcox_test(il17_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il17_npa1)
na_c = sum(is.na(foo$df.il7_npa1))
nrow(df) - na_c
tapply(df$il17_npa1, df$obesity, median, na.rm = T)
tapply(df$il7_npa1, df$obesity, summary, na.rm = T)
# il5: t1
wilcox.test(df_ob$il5_npa1, df_nob$il5_npa1)
wilcox_test(il5_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il5_npa1)
na_c = sum(is.na(foo$df.il5_npa1))
nrow(df) - na_c
tapply(df$il5_npa1, df$obesity, median, na.rm = T)
tapply(df$il5_npa1, df$obesity, summary, na.rm = T)
# il6: t1
wilcox.test(df_ob$il6_npa1, df_nob$il6_npa1)
wilcox_test(il6_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il6_npa1)
na_c = sum(is.na(foo$df.il6_npa1))
nrow(df) - na_c
tapply(df$il6_npa1, df$obesity, median, na.rm = T)
tapply(df$il6_npa1, df$obesity, summary, na.rm = T)
# mcp4: t1
wilcox.test(df_ob$mcp4_npa1, df_nob$mcp4_npa1)
wilcox_test(mcp4_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$mcp4_npa1)
na_c = sum(is.na(foo$df.mcp4_npa1))
nrow(df) - na_c
tapply(df$mcp4_npa1, df$obesity, median, na.rm = T)
tapply(df$mcp4_npa1, df$obesity, summary, na.rm = T)
# mip17: t1
wilcox.test(df_ob$mip17_npa1, df_nob$mip17_npa1)
wilcox_test(mip17_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$mip17_npa1)
na_c = sum(is.na(foo$df.mip17_npa1))
nrow(df) - na_c
tapply(df$mip17_npa1, df$obesity, median, na.rm = T)
tapply(df$mip17_npa1, df$obesity, summary, na.rm = T)
# neopterin: t1
wilcox.test(df_ob$neopterin_npa1, df_nob$neopterin_npa1)
wilcox_test(neopterin_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$neopterin_npa1)
na_c = sum(is.na(foo$df.neopterin_npa1))
nrow(df) - na_c
tapply(df$neopterin_npa1, df$obesity, median, na.rm = T)
tapply(df$neopterin_npa1, df$obesity, summary, na.rm = T)
# tnfr1: t1
wilcox.test(df_ob$tnfr1_npa1, df_nob$tnfr1_npa1)
wilcox_test(tnfr1_npa1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$neopterin_npa1)
na_c = sum(is.na(foo$df.tnfr1_npa1))
nrow(df) - na_c
tapply(df$tnfr1_npa1, df$obesity, median, na.rm = T)
tapply(df$tnfr1_npa1 , df$obesity, summary, na.rm = T)
#============
# sam
#============
# il5: t1
wilcox.test(df_ob$il5_sam1, df_nob$il5_sam1)
wilcox_test(il5_sam1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il5_sam1)
na_c = sum(is.na(foo$df.il5_sam1))
nrow(df) - na_c
tapply(df$il5_sam1, df$obesity, median, na.rm = T)
tapply(df$il5_sam1 , df$obesity, summary, na.rm = T)
#============
# serum
#============
# il17: t1
wilcox.test(df_ob$il17_serum1, df_nob$il17_serum1)
wilcox_test(il17_serum1 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il17_serum1)
na_c = sum(is.na(foo$df.il17_serum1))
nrow(df) - na_c
tapply(df$il17_serum1, df$obesity, median, na.rm = T)
tapply(df$il17_serum1 , df$obesity, summary, na.rm = T)
# il17: t3
wilcox.test(df_ob$il17_serum3, df_nob$il17_serum3)
wilcox_test(il17_serum3 ~ obesity, data = df)
foo = data.frame(df$obesity, df$il17_serum3)
na_c = sum(is.na(foo$df.il17_serum3))
nrow(df) - na_c
tapply(df$il17_serum3, df$obesity, median, na.rm = T)
tapply(df$il17_serum3 , df$obesity, summary, na.rm = T)
# mcp4: t3
wilcox.test(df_ob$mcp4_serum3, df_nob$mcp4_serum3)
wilcox_test(mcp4_serum3 ~ obesity, data = df)
foo = data.frame(df$obesity, df$mcp4_serum3)
na_c = sum(is.na(foo$df.mcp4_serum3))
nrow(df) - na_c
tapply(df$mcp4_serum3, df$obesity, median, na.rm = T)
tapply(df$mcp4_serum3, df$obesity, summary, na.rm = T)
# eotaxin3: t3
wilcox.test(df_ob$eotaxin3_serum3, df_nob$eotaxin3_serum3)
wilcox_test(eotaxin3_serum3 ~ obesity, data = df)
foo = data.frame(df$obesity, df$eotaxin3_serum3)
na_c = sum(is.na(foo$df.eotaxin3_serum3))
nrow(df) - na_c
tapply(df$eotaxin3_serum3, df$obesity, median, na.rm = T)
tapply(df$eotaxin3_serum3, df$obesity, summary, na.rm = T)
# rantes: t3
wilcox.test(df_ob$rantes_serum3, df_nob$rantes_serum3)
wilcox_test(rantes_serum3 ~ obesity, data = df)
foo = data.frame(df$obesity, df$rantes_serum3)
na_c = sum(is.na(foo$df.rantes_serum3))
nrow(df) - na_c
tapply(df$rantes_serum3, df$obesity, median, na.rm = T)
tapply(df$rantes_serum3, df$obesity, summary, na.rm = T)

386
severe/flu_s_stats_unpaired_npa.R Executable file
View file

@ -0,0 +1,386 @@
#!/usr/bin/Rscript
getwd()
setwd("~/git/mosaic_2020/")
getwd()
############################################################
# TASK: unpaired (time) analysis of mediators:
# sample type: NPA
# data: Flu positive adult patients
# group: obesity
############################################################
my_sample_type = "npa"
#=============
# Input
#=============
#source("data_extraction_mediators.R")
source("plot_data_s.R")
# check: copd and asthma conflict
table(fp_adults_ics$ia_exac_copd==1 & fp_adults_ics$asthma == 1)
#=============
# Output
#=============
outfile_name = paste0("flu_stats_time_unpaired_s_", my_sample_type, ".csv")
flu_stats_time_unpaired = paste0(outdir_stats_s, outfile_name)
flu_stats_time_unpaired
# quick checks
table(wf_fp_npa$T1_resp_score)
table(lf_fp_npa$mediator, lf_fp_npa$timepoint, lf_fp_npa$T1_resp_score)
#===============================
# data assignment for stats
#================================
wf = wf_fp_npa
lf = lf_fp_npa
identical(wf, wf_fp_npa)
identical(lf, lf_fp_npa)
########################################################################
# clear variables
rm(lf_fp_sam, lf_fp_serum
, wf_fp_sam, wf_fp_serum)
# sanity checks
table(lf$timepoint)
length(unique(lf$mosaic))
table(wf$obesity)
########################################################################
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis
# with correction
########################################################################
# with adjustment: fdr and BH are identical
my_adjust_method = "BH"
#==============
# unpaired: t1
#==============
lf_t1 = lf[lf$timepoint == "t1",]
sum(is.na(lf_t1$value))
foo = lf_t1[which(is.na(lf_t1$value)),]
#ci = which(is.na(lf_t1$value))
#lf_t1_comp = lf_t1[-ci,]
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
stats_un_t1 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t1
, data = lf_t1_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
# add timepoint and convert to df
stats_un_t1$timepoint = "t1"
stats_un_t1 = as.data.frame(stats_un_t1)
class(stats_un_t1)
#----------------------------------------
# calculate n_obs for each mediator: t1
#----------------------------------------
#n_t1 = data.frame(table(lf_t1_comp$mediator))
n_t1_all = data.frame(table(lf_t1$mediator))
colnames(n_t1_all) = c("mediator", "n_obs")
n_t1_all$mediator = as.character(n_t1_all$mediator)
n_t1_comp = data.frame(table(lf_t1_comp$mediator))
colnames(n_t1_comp) = c("mediator", "n_obs_complete")
n_t1_comp$mediator = as.character(n_t1_comp$mediator)
merge_cols = intersect(names(n_t1_all), names(n_t1_comp)); merge_cols
n_t1= merge(n_t1_all, n_t1_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#===================================
merging_cols = intersect(names(stats_un_t1), names(n_t1)); merging_cols
if (all(n_t1$mediator%in%stats_un_t1$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}else{
nf = n_t1$mediator[!n_t1$mediator%in%stats_un_t1$mediator]
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}
# add bonferroni adjustment as well
stats_un_t1$p_adj_bonferroni = p.adjust(stats_un_t1$p, method = "bonferroni")
rm(n_t1)
rm(lf_t1_comp)
#==============
# unpaired: t2
#==============
lf_t2 = lf[lf$timepoint == "t2",]
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
stats_un_t2 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t2
, data = lf_t2_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t2$timepoint = "t2"
stats_un_t2 = as.data.frame(stats_un_t2)
class(stats_un_t2)
#----------------------------------------
# calculate n_obs for each mediator: t2
#----------------------------------------
#n_t2 = data.frame(table(lf_t2_comp$mediator))
n_t2_all = data.frame(table(lf_t2$mediator))
colnames(n_t2_all) = c("mediator", "n_obs")
n_t2_all$mediator = as.character(n_t2_all$mediator)
n_t2_comp = data.frame(table(lf_t2_comp$mediator))
colnames(n_t2_comp) = c("mediator", "n_obs_complete")
n_t2_comp$mediator = as.character(n_t2_comp$mediator)
merge_cols = intersect(names(n_t2_all), names(n_t2_comp)); merge_cols
n_t2= merge(n_t2_all, n_t2_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t2), names(n_t2)); merging_cols
if (all(n_t2$mediator%in%stats_un_t2$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}else{
nf = n_t2$mediator[!n_t2$mediator%in%stats_un_t2$mediator]
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}
# add bonferroni adjustment as well
stats_un_t2$p_adj_bonferroni = p.adjust(stats_un_t2$p, method = "bonferroni")
rm(n_t2)
rm(lf_t2_comp)
#==============
# unpaired: t3
#==============
lf_t3 = lf[lf$timepoint == "t3",]
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
stats_un_t3 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t3
, data = lf_t3_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t3$timepoint = "t3"
stats_un_t3 = as.data.frame(stats_un_t3)
class(stats_un_t3)
#----------------------------------------
# calculate n_obs for each mediator: t3
#----------------------------------------
#n_t3 = data.frame(table(lf_t3_comp$mediator))
n_t3_all = data.frame(table(lf_t3$mediator))
colnames(n_t3_all) = c("mediator", "n_obs")
n_t3_all$mediator = as.character(n_t3_all$mediator)
n_t3_comp = data.frame(table(lf_t3_comp$mediator))
colnames(n_t3_comp) = c("mediator", "n_obs_complete")
n_t3_comp$mediator = as.character(n_t3_comp$mediator)
merge_cols = intersect(names(n_t3_all), names(n_t3_comp)); merge_cols
n_t3= merge(n_t3_all, n_t3_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t3), names(n_t3)); merging_cols
if (all(n_t3$mediator%in%stats_un_t3$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}else{
nf = n_t3$mediator[!n_t3$mediator%in%stats_un_t3$mediator]
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}
# add bonferroni adjustment as well
stats_un_t3$p_adj_bonferroni = p.adjust(stats_un_t3$p, method = "bonferroni")
rm(n_t3)
rm(lf_t3_comp)
########################################################################
#==============
# Rbind these dfs
#==============
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
n_dfs = 3
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
expected_rows = nrow(stats_un_t1) * n_dfs
expected_cols = ncol(stats_un_t1)
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
}else{
cat("FAIL: dfs have different no. of rows and cols"
, "\nCheck harcoded value of n_dfs"
, "\nexpected_rows and cols could not be generated")
quit()
}
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
print("PASS: colnames match. Rbind the 3 dfs...")
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
} else{
cat("FAIL: cannot combined dfs. Colnames don't match!")
quit()
}
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
cat("PASS: combined_df has expected dimension"
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
}else{
cat("FAIL: combined_df dimension mismatch")
quit()
}
#######################################################################
#=================
# formatting df
#=================
# delete: unnecessary column
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
# add sample_type
cat("Adding sample type info as a column", my_sample_type, "...")
combined_unpaired_stats$sample_type = my_sample_type
# add: reflect stats method correctly i.e paired or unpaired
# incase there are NA due to LLODs, the gsub won't work!
#combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
combined_unpaired_stats$method = "wilcoxon unpaired"
combined_unpaired_stats$method
# add an extra column for padjust_signif: my_adjust_method
combined_unpaired_stats$padjust_signif = combined_unpaired_stats$p.adj
# add appropriate symbols for padjust_signif: my_adjust_method
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
, padjust_signif <=0.0001 ~ '****'
, padjust_signif <=0.001 ~ '***'
, padjust_signif <=0.01 ~ '**'
, padjust_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# add an extra column for p_bon_signif
combined_unpaired_stats$p_bon_signif = combined_unpaired_stats$p_adj_bonferroni
# add appropriate symbols for p_bon_signif
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, p_bon_signif = case_when(p_bon_signif == 0.05 ~ "."
, p_bon_signif <=0.0001 ~ '****'
, p_bon_signif <=0.001 ~ '***'
, p_bon_signif <=0.01 ~ '**'
, p_bon_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# reorder columns
print("preparing to reorder columns...")
colnames(combined_unpaired_stats)
my_col_order2 = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p.format"
, "p.signif"
, "p.adj"
, "padjust_signif"
, "p_adj_bonferroni"
, "p_bon_signif")
if( length(my_col_order2) == ncol(combined_unpaired_stats) && (all(my_col_order2%in%colnames(combined_unpaired_stats))) ){
print("PASS: Reordering columns...")
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
print("Successful: column reordering")
print("formatted df called:'combined_unpaired_stats_f'")
cat('\nformatted df has the following dimensions\n')
print(dim(combined_unpaired_stats_f ))
} else{
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
, "\nGot:", length(my_col_order2)))
quit()
}
# assign nice column names like replace "." with "_"
colnames(combined_unpaired_stats_f) = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p_format"
, "p_signif"
, paste0("p_adj_fdr_", my_adjust_method)
, paste0("p_", my_adjust_method, "_signif")
, "p_adj_bonferroni"
, "p_bon_signif")
colnames(combined_unpaired_stats_f)
#---------------
# quick summary
#---------------
# count how many meds are significant
n_sig = length(combined_unpaired_stats_f$mediator[combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)])
sig_meds = combined_unpaired_stats_f[(combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)),]
sig_meds$med_time = paste0(sig_meds$mediator, "@", sig_meds$timepoint)
cat("\nTotal no. of statistically significant mediators in", toupper(my_sample_type)
, "are:", n_sig
, "\nThese are:", sig_meds$med_time)
########################################################################
#******************
# write output file
#******************
cat("\nUNpaired stats for groups will be:", flu_stats_time_unpaired)
write.csv(combined_unpaired_stats_f, flu_stats_time_unpaired, row.names = FALSE)

395
severe/flu_s_stats_unpaired_sam.R Executable file
View file

@ -0,0 +1,395 @@
#!/usr/bin/Rscript
getwd()
setwd("~/git/mosaic_2020/")
getwd()
############################################################
# TASK: unpaired (time) analysis of mediators:
# sample type: SAM
# data: Flu positive adult patients
# group: obesity
############################################################
my_sample_type = "sam"
#=============
# Input
#=============
#source("data_extraction_mediators.R")
source("plot_data_s.R")
# check: copd and asthma conflict
table(fp_adults_ics$ia_exac_copd==1 & fp_adults_ics$asthma == 1)
#=============
# Output
#=============
outfile_name = paste0("flu_stats_time_unpaired_s_", my_sample_type, ".csv")
flu_stats_time_unpaired = paste0(outdir_stats_s, outfile_name)
flu_stats_time_unpaired
# quick checks
table(wf_fp_sam$T1_resp_score)
table(lf_fp_sam$mediator, lf_fp_sam$timepoint, lf_fp_sam$T1_resp_score)
table(wf$obesity)
#===============================
# data assignment for stats
#================================
wf = wf_fp_sam
lf = lf_fp_sam
identical(wf, wf_fp_sam)
identical(lf, lf_fp_sam)
########################################################################
# clear variables
rm(lf_fp_npa, lf_fp_serum
, wf_fp_npa, wf_fp_serum)
# sanity checks
table(lf$timepoint)
length(unique(lf$mosaic))
#if (table(lf$flustat) == table(sam_lf$flustat)[[2]]){
# cat("Analysing Flu positive patients for:", my_sample_type)
#}else{
# cat("FAIL: problem with subsetting data for:", my_sample_type)
# quit()
#}
########################################################################
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis
# with correction
#######################################################################
# with adjustment: fdr and BH are identical
my_adjust_method = "BH"
#==============
# unpaired: t1
#==============
lf_t1 = lf[lf$timepoint == "t1",]
sum(is.na(lf_t1$value))
foo = lf_t1[which(is.na(lf_t1$value)),]
#ci = which(is.na(lf_t1$value))
#lf_t1_comp = lf_t1[-ci,]
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
stats_un_t1 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t1
, data = lf_t1_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
# add timepoint and convert to df
stats_un_t1$timepoint = "t1"
stats_un_t1 = as.data.frame(stats_un_t1)
class(stats_un_t1)
#----------------------------------------
# calculate n_obs for each mediator: t1
#----------------------------------------
#n_t1 = data.frame(table(lf_t1_comp$mediator))
n_t1_all = data.frame(table(lf_t1$mediator))
colnames(n_t1_all) = c("mediator", "n_obs")
n_t1_all$mediator = as.character(n_t1_all$mediator)
n_t1_comp = data.frame(table(lf_t1_comp$mediator))
colnames(n_t1_comp) = c("mediator", "n_obs_complete")
n_t1_comp$mediator = as.character(n_t1_comp$mediator)
merge_cols = intersect(names(n_t1_all), names(n_t1_comp)); merge_cols
n_t1= merge(n_t1_all, n_t1_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#===================================
merging_cols = intersect(names(stats_un_t1), names(n_t1)); merging_cols
if (all(n_t1$mediator%in%stats_un_t1$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}else{
nf = n_t1$mediator[!n_t1$mediator%in%stats_un_t1$mediator]
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}
# add bonferroni adjustment as well
stats_un_t1$p_adj_bonferroni = p.adjust(stats_un_t1$p, method = "bonferroni")
rm(n_t1)
rm(lf_t1_comp)
#==============
# unpaired: t2
#==============
lf_t2 = lf[lf$timepoint == "t2",]
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
stats_un_t2 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t2
, data = lf_t2_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t2$timepoint = "t2"
stats_un_t2 = as.data.frame(stats_un_t2)
class(stats_un_t2)
#----------------------------------------
# calculate n_obs for each mediator: t2
#----------------------------------------
#n_t2 = data.frame(table(lf_t2_comp$mediator))
n_t2_all = data.frame(table(lf_t2$mediator))
colnames(n_t2_all) = c("mediator", "n_obs")
n_t2_all$mediator = as.character(n_t2_all$mediator)
n_t2_comp = data.frame(table(lf_t2_comp$mediator))
colnames(n_t2_comp) = c("mediator", "n_obs_complete")
n_t2_comp$mediator = as.character(n_t2_comp$mediator)
merge_cols = intersect(names(n_t2_all), names(n_t2_comp)); merge_cols
n_t2= merge(n_t2_all, n_t2_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#===================================
merging_cols = intersect(names(stats_un_t2), names(n_t2)); merging_cols
if (all(n_t2$mediator%in%stats_un_t2$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}else{
nf = n_t2$mediator[!n_t2$mediator%in%stats_un_t2$mediator]
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}
# add bonferroni adjustment as well
stats_un_t2$p_adj_bonferroni = p.adjust(stats_un_t2$p, method = "bonferroni")
rm(n_t2)
rm(lf_t2_comp)
#==============
# unpaired: t3
#==============
lf_t3 = lf[lf$timepoint == "t3",]
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
stats_un_t3 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t3
, data = lf_t3_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t3$timepoint = "t3"
stats_un_t3 = as.data.frame(stats_un_t3)
class(stats_un_t3)
#----------------------------------------
# calculate n_obs for each mediator: t3
#----------------------------------------
#n_t3 = data.frame(table(lf_t3_comp$mediator))
n_t3_all = data.frame(table(lf_t3$mediator))
colnames(n_t3_all) = c("mediator", "n_obs")
n_t3_all$mediator = as.character(n_t3_all$mediator)
n_t3_comp = data.frame(table(lf_t3_comp$mediator))
colnames(n_t3_comp) = c("mediator", "n_obs_complete")
n_t3_comp$mediator = as.character(n_t3_comp$mediator)
merge_cols = intersect(names(n_t3_all), names(n_t3_comp)); merge_cols
n_t3= merge(n_t3_all, n_t3_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t3), names(n_t3)); merging_cols
if (all(n_t3$mediator%in%stats_un_t3$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}else{
nf = n_t3$mediator[!n_t3$mediator%in%stats_un_t3$mediator]
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}
# check: satisfied!!!!
# FIXME: supply the col name automatically?
wilcox.test(wf$ifna2a_sam3[wf$obesity == 1], wf$ifna2a_sam3[wf$obesity == 0])
# add bonferroni adjustment as well
stats_un_t3$p_adj_bonferroni = p.adjust(stats_un_t3$p, method = "bonferroni")
rm(n_t3)
rm(lf_t3_comp)
########################################################################
#=================
# Rbind these dfs
#=================
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
n_dfs = 3
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
expected_rows = nrow(stats_un_t1) * n_dfs
expected_cols = ncol(stats_un_t1)
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
}else{
cat("FAIL: dfs have different no. of rows and cols"
, "\nCheck harcoded value of n_dfs"
, "\nexpected_rows and cols could not be generated")
quit()
}
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
print("PASS: colnames match. Rbind the 3 dfs...")
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
} else{
cat("FAIL: cannot combined dfs. Colnames don't match!")
quit()
}
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
cat("PASS: combined_df has expected dimension"
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
}else{
cat("FAIL: combined_df dimension mismatch")
quit()
}
#######################################################################
#=================
# formatting df
#=================
# delete: unnecessary column
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
# add sample_type
cat("Adding sample type info as a column", my_sample_type, "...")
combined_unpaired_stats$sample_type = my_sample_type
# add: reflect stats method correctly i.e paired or unpaired
# incase there are NA due to LLODs, the gsub won't work!
#combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
combined_unpaired_stats$method = "wilcoxon unpaired"
combined_unpaired_stats$method
# add an extra column for padjust_signif: my_adjust_method
combined_unpaired_stats$padjust_signif = combined_unpaired_stats$p.adj
# add appropriate symbols for padjust_signif: my_adjust_method
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
, padjust_signif <=0.0001 ~ '****'
, padjust_signif <=0.001 ~ '***'
, padjust_signif <=0.01 ~ '**'
, padjust_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# add an extra column for p_bon_signif
combined_unpaired_stats$p_bon_signif = combined_unpaired_stats$p_adj_bonferroni
# add appropriate symbols for p_bon_signif
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, p_bon_signif = case_when(p_bon_signif == 0.05 ~ "."
, p_bon_signif <=0.0001 ~ '****'
, p_bon_signif <=0.001 ~ '***'
, p_bon_signif <=0.01 ~ '**'
, p_bon_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# reorder columns
print("preparing to reorder columns...")
colnames(combined_unpaired_stats)
my_col_order2 = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p.format"
, "p.signif"
, "p.adj"
, "padjust_signif"
, "p_adj_bonferroni"
, "p_bon_signif")
if( length(my_col_order2) == ncol(combined_unpaired_stats) && (all(my_col_order2%in%colnames(combined_unpaired_stats))) ){
print("PASS: Reordering columns...")
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
print("Successful: column reordering")
print("formatted df called:'combined_unpaired_stats_f'")
cat('\nformatted df has the following dimensions\n')
print(dim(combined_unpaired_stats_f ))
} else{
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
, "\nGot:", length(my_col_order2)))
quit()
}
# assign nice column names like replace "." with "_"
colnames(combined_unpaired_stats_f) = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p_format"
, "p_signif"
, paste0("p_adj_fdr_", my_adjust_method)
, paste0("p_", my_adjust_method, "_signif")
, "p_adj_bonferroni"
, "p_bon_signif")
colnames(combined_unpaired_stats_f)
#---------------
# quick summary
#---------------
# count how many meds are significant
n_sig = length(combined_unpaired_stats_f$mediator[combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)])
sig_meds = combined_unpaired_stats_f[(combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)),]
sig_meds$med_time = paste0(sig_meds$mediator, "@", sig_meds$timepoint)
cat("\nTotal no. of statistically significant mediators in", toupper(my_sample_type)
, "are:", n_sig
, "\nThese are:", sig_meds$med_time)
#######################################################################
#******************
# write output file
#******************
cat("\nUNpaired stats for groups will be:", flu_stats_time_unpaired)
write.csv(combined_unpaired_stats_f, flu_stats_time_unpaired, row.names = FALSE)

View file

@ -0,0 +1,376 @@
#!/usr/bin/Rscript
getwd()
setwd("~/git/mosaic_2020/")
getwd()
############################################################
# TASK: unpaired (time) analysis of mediators: serum
############################################################
my_sample_type = "serum"
#=============
# Input
#=============
#source("data_extraction_mediators.R")
source("plot_data_s.R")
# check: copd and asthma conflict
table(fp_adults_ics$ia_exac_copd==1 & fp_adults_ics$asthma == 1)
#=============
# Output
#=============
outfile_name = paste0("flu_stats_time_unpaired_s_", my_sample_type, ".csv")
flu_stats_time_unpaired = paste0(outdir_stats_s, outfile_name)
flu_stats_time_unpaired
# quick checks
table(wf_fp_npa$T1_resp_score)
table(lf_fp_npa$mediator, lf_fp_npa$timepoint, lf_fp_npa$T1_resp_score)
table(wf$obesity)
#===============================
# data assignment for stats
#================================
wf = wf_fp_serum
lf = lf_fp_serum
identical(wf, wf_fp_serum)
identical(lf, lf_fp_serum)
########################################################################
# clear variables
rm(lf_fp_sam, lf_fp_npa
, wf_fp_sam, wf_fp_npa)
########################################################################
# Unpaired stats at each timepoint b/w groups: wilcoxon UNpaired analysis
# with correction
#######################################################################
# with adjustment: fdr and BH are identical
my_adjust_method = "BH"
#==============
# unpaired: t1
#==============
lf_t1 = lf[lf$timepoint == "t1",]
sum(is.na(lf_t1$value))
foo = lf_t1[which(is.na(lf_t1$value)),]
ci = which(is.na(lf_t1$value))
#lf_t1_comp = lf_t1[-ci,]
lf_t1_comp = lf_t1[-which(is.na(lf_t1$value)),]
stats_un_t1 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t1
, data = lf_t1_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
foo$mosaic[!unique(foo$mosaic)%in%unique(lf_t1_comp$mosaic)]
# add timepoint and convert to df
stats_un_t1$timepoint = "t1"
stats_un_t1 = as.data.frame(stats_un_t1)
class(stats_un_t1)
#----------------------------------------
# calculate n_obs for each mediator: t1
#----------------------------------------
#n_t1 = data.frame(table(lf_t1_comp$mediator))
n_t1_all = data.frame(table(lf_t1$mediator))
colnames(n_t1_all) = c("mediator", "n_obs")
n_t1_all$mediator = as.character(n_t1_all$mediator)
n_t1_comp = data.frame(table(lf_t1_comp$mediator))
colnames(n_t1_comp) = c("mediator", "n_obs_complete")
n_t1_comp$mediator = as.character(n_t1_comp$mediator)
merge_cols = intersect(names(n_t1_all), names(n_t1_comp)); merge_cols
n_t1= merge(n_t1_all, n_t1_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t1), names(n_t1)); merging_cols
if (all(n_t1$mediator%in%stats_un_t1$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}else{
nf = n_t1$mediator[!n_t1$mediator%in%stats_un_t1$mediator]
stats_un_t1 = merge(stats_un_t1, n_t1, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t1)
, "\nncol:", ncol(stats_un_t1))
}
# add bonferroni adjustment as well
stats_un_t1$p_adj_bonferroni = p.adjust(stats_un_t1$p, method = "bonferroni")
rm(n_t1)
rm(lf_t1_comp)
#==============
# unpaired: t2
#==============
lf_t2 = lf[lf$timepoint == "t2",]
lf_t2_comp = lf_t2[-which(is.na(lf_t2$value)),]
stats_un_t2 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t2
, data = lf_t2_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t2$timepoint = "t2"
stats_un_t2 = as.data.frame(stats_un_t2)
class(stats_un_t2)
#----------------------------------------
# calculate n_obs for each mediator: t2
#----------------------------------------
#n_t2 = data.frame(table(lf_t2_comp$mediator))
n_t2_all = data.frame(table(lf_t2$mediator))
colnames(n_t2_all) = c("mediator", "n_obs")
n_t2_all$mediator = as.character(n_t2_all$mediator)
n_t2_comp = data.frame(table(lf_t2_comp$mediator))
colnames(n_t2_comp) = c("mediator", "n_obs_complete")
n_t2_comp$mediator = as.character(n_t2_comp$mediator)
merge_cols = intersect(names(n_t2_all), names(n_t2_comp)); merge_cols
n_t2= merge(n_t2_all, n_t2_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t2), names(n_t2)); merging_cols
if (all(n_t2$mediator%in%stats_un_t2$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}else{
nf = n_t2$mediator[!n_t2$mediator%in%stats_un_t2$mediator]
stats_un_t2 = merge(stats_un_t2, n_t2, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t2)
, "\nncol:", ncol(stats_un_t2))
}
# add bonferroni adjustment as well
stats_un_t2$p_adj_bonferroni = p.adjust(stats_un_t2$p, method = "bonferroni")
rm(n_t2)
rm(lf_t2_comp)
#==============
# unpaired: t3
#==============
lf_t3 = lf[lf$timepoint == "t3",]
lf_t3_comp = lf_t3[-which(is.na(lf_t3$value)),]
stats_un_t3 = compare_means(value~obesity
, group.by = "mediator"
#, data = lf_t3
, data = lf_t3_comp
, paired = FALSE
, p.adjust.method = my_adjust_method)
# add timepoint and convert to df
stats_un_t3$timepoint = "t3"
stats_un_t3 = as.data.frame(stats_un_t3)
class(stats_un_t3)
#----------------------------------------
# calculate n_obs for each mediator: t3
#----------------------------------------
#n_t3 = data.frame(table(lf_t3_comp$mediator))
n_t3_all = data.frame(table(lf_t3$mediator))
colnames(n_t3_all) = c("mediator", "n_obs")
n_t3_all$mediator = as.character(n_t3_all$mediator)
n_t3_comp = data.frame(table(lf_t3_comp$mediator))
colnames(n_t3_comp) = c("mediator", "n_obs_complete")
n_t3_comp$mediator = as.character(n_t3_comp$mediator)
merge_cols = intersect(names(n_t3_all), names(n_t3_comp)); merge_cols
n_t3 = merge(n_t3_all, n_t3_comp, by = merge_cols, all = T)
#==================================
# Merge: merge stats + n_obs df
#==================================
merging_cols = intersect(names(stats_un_t3), names(n_t3)); merging_cols
if (all(n_t3$mediator%in%stats_un_t3$mediator)) {
cat("PASS: merging stats and n_obs on column/s:", merging_cols)
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all = T)
cat("\nsuccessfull merge:"
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}else{
nf = n_t3$mediator[!n_t3$mediator%in%stats_un_t3$mediator]
stats_un_t3 = merge(stats_un_t3, n_t3, by = merging_cols, all.y = T)
cat("\nMerged with caution:"
, "\nnrows mismatch:", nf
, "not found in stats possibly due to all obs being LLODs"
, "\nintroduced NAs for:", nf
, "\nnrow:", nrow(stats_un_t3)
, "\nncol:", ncol(stats_un_t3))
}
# add bonferroni adjustment as well
stats_un_t3$p_adj_bonferroni = p.adjust(stats_un_t3$p, method = "bonferroni")
rm(n_t3)
rm(lf_t3_comp)
########################################################################
#==============
# Rbind these dfs
#==============
str(stats_un_t1);str(stats_un_t2); str(stats_un_t3)
n_dfs = 3
if ( all.equal(nrow(stats_un_t1), nrow(stats_un_t2), nrow(stats_un_t3)) &&
all.equal(ncol(stats_un_t1), ncol(stats_un_t2), ncol(stats_un_t3)) ) {
expected_rows = nrow(stats_un_t1) * n_dfs
expected_cols = ncol(stats_un_t1)
print("PASS: expected_rows and cols variables generated for downstream sanity checks")
}else{
cat("FAIL: dfs have different no. of rows and cols"
, "\nCheck harcoded value of n_dfs"
, "\nexpected_rows and cols could not be generated")
quit()
}
if ( all.equal(colnames(stats_un_t1), colnames(stats_un_t2), colnames(stats_un_t3)) ){
print("PASS: colnames match. Rbind the 3 dfs...")
combined_unpaired_stats = rbind(stats_un_t1, stats_un_t2, stats_un_t3)
} else{
cat("FAIL: cannot combined dfs. Colnames don't match!")
quit()
}
if ( nrow(combined_unpaired_stats) == expected_rows && ncol(combined_unpaired_stats) == expected_cols ){
cat("PASS: combined_df has expected dimension"
, "\nNo. of rows in combined_df:", nrow(combined_unpaired_stats)
, "\nNo. of cols in combined_df:", ncol(combined_unpaired_stats) )
}else{
cat("FAIL: combined_df dimension mismatch")
quit()
}
#######################################################################
#=================
# formatting df
#=================
# delete: unnecessary column
combined_unpaired_stats = subset(combined_unpaired_stats, select = -c(.y.))
# add sample_type
cat("Adding sample type info as a column", my_sample_type, "...")
combined_unpaired_stats$sample_type = my_sample_type
# add: reflect stats method correctly i.e paired or unpaired
# incase there are NA due to LLODs, the gsub won't work!
#combined_unpaired_stats$method = gsub("Wilcoxon", "Wilcoxon_unpaired", combined_unpaired_stats$method)
combined_unpaired_stats$method = "wilcoxon unpaired"
combined_unpaired_stats$method
# add an extra column for padjust_signif: my_adjust_method
combined_unpaired_stats$padjust_signif = combined_unpaired_stats$p.adj
# add appropriate symbols for padjust_signif: my_adjust_method
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, padjust_signif = case_when(padjust_signif == 0.05 ~ "."
, padjust_signif <=0.0001 ~ '****'
, padjust_signif <=0.001 ~ '***'
, padjust_signif <=0.01 ~ '**'
, padjust_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# add an extra column for p_bon_signif
combined_unpaired_stats$p_bon_signif = combined_unpaired_stats$p_adj_bonferroni
# add appropriate symbols for p_bon_signif
combined_unpaired_stats = dplyr::mutate(combined_unpaired_stats, p_bon_signif = case_when(p_bon_signif == 0.05 ~ "."
, p_bon_signif <=0.0001 ~ '****'
, p_bon_signif <=0.001 ~ '***'
, p_bon_signif <=0.01 ~ '**'
, p_bon_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# reorder columns
print("preparing to reorder columns...")
colnames(combined_unpaired_stats)
my_col_order2 = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p.format"
, "p.signif"
, "p.adj"
, "padjust_signif"
, "p_adj_bonferroni"
, "p_bon_signif")
if( length(my_col_order2) == ncol(combined_unpaired_stats) && (all(my_col_order2%in%colnames(combined_unpaired_stats))) ){
print("PASS: Reordering columns...")
combined_unpaired_stats_f = combined_unpaired_stats[, my_col_order2]
print("Successful: column reordering")
print("formatted df called:'combined_unpaired_stats_f'")
cat('\nformatted df has the following dimensions\n')
print(dim(combined_unpaired_stats_f ))
} else{
cat(paste0("FAIL:Cannot reorder columns, length mismatch"
, "\nExpected column order for: ", ncol(combined_unpaired_stats)
, "\nGot:", length(my_col_order2)))
quit()
}
# assign nice column names like replace "." with "_"
colnames(combined_unpaired_stats_f) = c("mediator"
, "timepoint"
, "sample_type"
, "n_obs"
, "n_obs_complete"
, "group1"
, "group2"
, "method"
, "p"
, "p_format"
, "p_signif"
, paste0("p_adj_fdr_", my_adjust_method)
, paste0("p_", my_adjust_method, "_signif")
, "p_adj_bonferroni"
, "p_bon_signif")
colnames(combined_unpaired_stats_f)
#---------------
# quick summary
#---------------
# count how many meds are significant
n_sig = length(combined_unpaired_stats_f$mediator[combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)])
sig_meds = combined_unpaired_stats_f[(combined_unpaired_stats_f$p_signif<0.05 & !is.na(combined_unpaired_stats_f$p_signif<0.05)),]
sig_meds$med_time = paste0(sig_meds$mediator, "@", sig_meds$timepoint)
cat("\nTotal no. of statistically significant mediators in", toupper(my_sample_type)
, "are:", n_sig
, "\nThese are:", sig_meds$med_time)
########################################################################
#******************
# write output file
#******************
cat("UNpaired stats for groups will be:", flu_stats_time_unpaired)
write.csv(combined_unpaired_stats_f, flu_stats_time_unpaired, row.names = FALSE)