separated fisher test only and renamed logistic_outcome col

This commit is contained in:
Tanushree Tunstall 2020-11-19 17:48:08 +00:00
parent 6e999898df
commit 269918d696
2 changed files with 98 additions and 130 deletions

View file

@ -330,6 +330,12 @@ merging_cols = intersect( names(clinical_df), names(clinical_ics) )
clinical_df_ics = merge(clinical_df, clinical_ics, by = merging_cols, all = T); clinical_df_ics
colnames(clinical_df_ics)
# change colname of logistic_outcome
c1 = which(colnames(clinical_df_ics) == "logistic_outcome")
colnames(clinical_df_ics)[c1] <- "t1_resp_recoded"
if (nrow(clinical_df_ics) == nrow(clinical_df) & nrow(clinical_ics)){
cat("\nPASS: No. of rows match, nrow =", nrow(clinical_df_ics)
, "\nChecking ncols...")
@ -353,7 +359,10 @@ outfile_reg = paste0(outdir, outfile_name_reg)
cat("\nWriting clinical file for regression:", outfile_reg)
#write.csv(clinical_df_ics, file = outfile_reg)
write.csv(clinical_df_ics, file = outfile_reg)
################################################################
rm(age_bins, max_age_interval, max_in, min_in, o2_sat_bin, onset_initial_bin, tot_o2, tot_onset2ini, meta_data_cols)
rm(age_bins, max_age_interval, max_in, min_in
, o2_sat_bin, onset_initial_bin, tot_o2
, tot_onset2ini, meta_data_cols
, clinical_df)

View file

@ -3,20 +3,22 @@ getwd()
setwd("~/git/mosaic_2020/")
getwd()
############################################################
# TASK: unpaired (time) analysis of clinical data
# TASK: Contingency table analysis i.e chisq and fishers
# data: clincial data of flu positive adult patients
# group: obesity
# Chisq test
#https://www.google.com/search?q=chisq+test+on+long+format+data+in+R+using+group+by&source=lmns&bih=828&biw=1280&client=firefox-b-d&hl=en-GB&sa=X&ved=2ahUKEwjItpL7xI7tAhUGTBoKHXlSBa8Q_AUoAHoECAEQAA
############################################################
#my_sample_type = "npa"
#=============
# Input
#=============
source("data_extraction_formatting_clinical.R")
str(clinical_df)
str(clinical_df_ics)
clinical_df$sfluv = as.integer(clinical_df$sfluv)
clinical_df$h1n1v = as.integer(clinical_df$h1n1v)
clinical_df_ics$sfluv = as.integer(clinical_df_ics$sfluv)
clinical_df_ics$h1n1v = as.integer(clinical_df_ics$h1n1v)
#=============
# Output
@ -44,58 +46,28 @@ categorical_cols = c( "death"
, "com_noasthma"
, "T2_resp_score"
, "inresp_sev"
, "steroid")
, "steroid"
, "age_bins"
, "o2_sat_bin"
, "onset_initial_bin"
, "t1_resp_recoded"
, "steroid_ics")
metadata_cols = c("mosaic", "obesity")
categ_df = clinical_df[, c(metadata_cols, categorical_cols)]
categ_df = clinical_df_ics[, c(metadata_cols, categorical_cols)]
# quick test
tab = table(categ_df$obesity, categ_df$death)
tab
chisq.test(tab)
pivot_cols = metadata_cols
#pivot_cols = metadata_cols[!meta_data_cols%in%cols_to_omit];pivot_cols
expected_rows_categ_lf = nrow(categ_df) * ( length(categ_df) - length(pivot_cols) ); expected_rows_categ_lf
colnames(categ_df)
keycol <- "clinical_categ_params"
valuecol <- "value"
gathercols <- c("death"
#, "flustat"
, "sfluv", "h1n1v"
, "gender", "asthma"
#, "o2_sat_suppl"
, "ethnicity"
, "smoking", "ia_cxr", "max_resp_score", "T1_resp_score"
, "com_noasthma", "T2_resp_score", "inresp_sev", "steroid")
categ_lf = gather_(categ_df, keycol, valuecol, gathercols)
#categ_lf = gather(categ_df, clinical_categ_params, value, death:T2_resp_score, factor_key = F)
if( nrow(categ_lf) == expected_rows_categ_lf){
cat("PASS: long format data created successfully"
, "\nnrow:", nrow(categ_lf)
, "\nncol:", ncol(categ_lf))
}
#=============================================
# Chisq test: clinical categorical vars
#https://www.google.com/search?q=chisq+test+on+long+format+data+in+R+using+group+by&source=lmns&bih=828&biw=1280&client=firefox-b-d&hl=en-GB&sa=X&ved=2ahUKEwjItpL7xI7tAhUGTBoKHXlSBa8Q_AUoAHoECAEQAA
#=============================================
#=============================================
# wf data
#=============================================
#========================================================
# Data: for chisq and fisher
#========================================================
stats_df = subset(categ_df, select = -c(mosaic))
drop_cols = c("mosaic", "obesity")
my_categ_cols = colnames(categ_df)[!colnames(categ_df)%in%drop_cols]
my_categ_cols = colnames(categ_df)[!colnames(categ_df)%in%metadata_cols]
if ( length(my_categ_cols) == ncol(categ_df) - length(drop_cols) ){
cat("PASS: variables for chisq test successfully extracted")
@ -103,16 +75,19 @@ if ( length(my_categ_cols) == ncol(categ_df) - length(drop_cols) ){
cat("FAIL: length mismatch when extracting variables for chisq")
quit()
}
# quick test
tab = table(stats_df$obesity, stats_df$smoking)
tab
test1 = chisq.test(tab)
########################################################################
#--------------------
# chisq test
#--------------------
chisq_df = data.frame()
for (i in my_categ_cols){
#print(i)
df = data.frame(clinical_categ_params = NA, n_obs = NA, method = NA, test_statistic = NA, p = NA)
df = data.frame(clinical_categ_params = NA
, n_obs = NA
, method = NA
#, test_statistic = NA
, p = NA)
my_param_val = (get(i, stats_df))
tab = table(stats_df$obesity, my_param_val)
print(tab)
@ -123,20 +98,21 @@ for (i in my_categ_cols){
my_param_name = i
my_n_obs = sum(my_chi_test$observed)
my_method = my_chi_test$method
my_test_statistic = my_chi_test$statistic[[1]]
#my_test_statistic = my_chi_test$statistic[[1]]
my_pval = my_chi_test$p.value
# assiging to loop df
df$clinical_categ_params = my_param_name
df$n_obs = my_n_obs
df$method = my_method
df$test_statistic = my_test_statistic
#df$test_statistic = my_test_statistic
df$p = my_pval
print(df)
chisq_df = rbind(chisq_df, df)
}
# formatting
chisq_df$p_format = format.pval(chisq_df$p)
chisq_df$p_signif = chisq_df$p
@ -147,34 +123,29 @@ chisq_df = dplyr::mutate(chisq_df, p_signif = case_when(p_signif == 0.05 ~ "."
, p_signif <0.05 ~ '*'
, p_signif == 0.1 ~ '.'
, TRUE ~ 'ns'))
#=============================================
# Fishers test
#=============================================
# quick test
tab2 = table(stats_df$obesity, stats_df$smoking)
tab2
#test2 = fisher_test(tab2); test2
test3 = fisher.test(stats_df$obesity, stats_df$com_noasthma); test3
tab = table(stats_df$obesity, stats_df$smoking); tab
test1 = chisq.test(tab); test1
test2 = chisq_test(tab); test2 #rstatix
sum(tab)
stats_df_copy = stats_df
int_vars <- lapply(stats_df_copy, class)%in%c("integer", "numeric")
int_vars
stats_df_copy[, int_vars] <- lapply(stats_df_copy[, int_vars], as.factor)
str(stats_df_copy)
#================================================================================
#--------------------
# Fishers test: without any OR
# see standalone script for this!
#--------------------
two_lev = lapply(stats_df_copy, nlevels) == 2
fisher_cols_df1 = names(two_lev)[two_lev == TRUE]
fisher_cols_df1
fisher_df = data.frame()
drop_cols = c("mosaic", "obesity")
fisher_cols_df1 = fisher_cols_df1[!fisher_cols_df1%in%drop_cols]
fisher_cols_df1
fisher_df1 = data.frame()
for (i in fisher_cols_df1){
for (i in my_categ_cols){
cat(i, "\n===============\n")
df = data.frame(clinical_categ_params = NA, n_obs = NA, method = NA, test_statistic = NA, p = NA, ci_low = NA, ci_high = NA)
df = data.frame(clinical_categ_params = NA
, n_obs = NA
, method = NA
#, test_statistic = NA
, p = NA)
my_param_val = (get(i, stats_df))
tab = table(stats_df$obesity, my_param_val)
print(tab)
@ -185,74 +156,62 @@ for (i in fisher_cols_df1){
my_param_name = i
my_n_obs = sum(tab)
my_method = my_fisher_test$method
my_test_statistic = my_fisher_test$statistic[[1]] # FIXME|
#my_test_statistic = my_fisher_test$estimate[[1]]
my_pval = my_fisher_test$p.value
my_ci_low = my_fisher_test$conf.int[[1]]
my_ci_hi = my_fisher_test$conf.int[[2]]
# assiging to loop df
df$clinical_categ_params = my_param_name
df$n_obs = my_n_obs
df$method = my_method
df$test_statistic = my_test_statistic
#df$test_statistic = my_test_statistic
df$p = my_pval
df$ci_low = my_ci_low
df$ci_high = my_ci_hi
print(df)
fisher_df1 = rbind(fisher_df1, df)
fisher_df = rbind(fisher_df, df)
}
#=============
# formatting
fisher_df$p_format = format.pval(fisher_df$p)
fisher_df$p_signif = fisher_df$p
three_lev = lapply(stats_df_copy, nlevels) == 3
fisher_cols_df2 = names(three_lev)[three_lev == TRUE]
fisher_cols_df2
fisher_df = dplyr::mutate(fisher_df, p_signif = case_when(p_signif == 0.05 ~ "."
, p_signif <=0.0001 ~ '****'
, p_signif <=0.001 ~ '***'
, p_signif <=0.01 ~ '**'
, p_signif <0.05 ~ '*'
, p_signif == 0.1 ~ '.'
, TRUE ~ 'ns'))
#drop_cols = c("mosaic", "obesity")
#fisher_cols_df2 = fisher_cols_df2[!fisher_cols_df2%in%drop_cols]
#fisher_cols_df2
# quick test
tab_f = table(stats_df$obesity, stats_df$smoking); tab_f
test1_f = fisher.test(tab); test1_f
test2_f = fisher_test(tab); test2_f #rstatix
sum(tab_f)
test1_f$estimate
fisher_df2 = data.frame()
for (i in fisher_cols_df2){
cat(i, "\n===============\n")
df = data.frame(clinical_categ_params = NA, n_obs = NA, method = NA, test_statistic = NA , p = NA)
my_param_val = (get(i, stats_df))
tab = table(stats_df$obesity, my_param_val)
print(tab)
my_fisher_test = fisher.test(tab)
print(my_fisher_test)
#================================================================================
#--------------------------------
# Combining chisq and fishers df
#---------------------------------
if ( all(colnames(chisq_df) == colnames(fisher_df)) && all(dim(chisq_df) == dim(fisher_df)) ){
cat("Colnames AND dim match for both chisq and fisher df"
, "\nNo. of rows:", nrow(chisq_df)
, "\nNo. of cols:", ncol(chisq_df)
, "\nProceeding to rbind")
# extracting results
my_param_name = i
my_n_obs = sum(tab)
my_method = my_fisher_test$method
my_test_statistic = ">2 categories"
my_pval = my_fisher_test$p.value
comb_stats_categ_df = rbind(chisq_df, fisher_df)
# assiging to loop df
df$clinical_categ_params = my_param_name
df$n_obs = my_n_obs
df$method = my_method
df$test_statistic = my_test_statistic
df$p = my_pval
print(df)
fisher_df2 = rbind(fisher_df2, df)
cat("\nCombined df dim:")
print(dim(comb_stats_categ_df))
}
# sort df according to p_signif AND clinical_categ_params
comb_stats_categ_df_f = comb_stats_categ_df[order(comb_stats_categ_df$p_signif
, comb_stats_categ_df$clinical_categ_params),]
########################################################################
#******************
# write output file
#******************
cat("Chisq and fishers test results in:", outfile_clin_categ)
#write.csv(stats_categ_df_f, outfile_clin_categ, row.names = FALSE)
write.csv(comb_stats_categ_df_f, outfile_clin_categ, row.names = FALSE)