commit 0dab1d5097804a45228583be4896e7a2f0ccebe2 Author: Tanushree Tunstall Date: Fri Oct 16 17:43:22 2020 +0100 initialised dir with data extraction script diff --git a/mosaic_bmi_data_extraction.R b/mosaic_bmi_data_extraction.R new file mode 100644 index 0000000..31020fe --- /dev/null +++ b/mosaic_bmi_data_extraction.R @@ -0,0 +1,237 @@ +all_df <- read.csv("/home/pub/Work/MOSAIC/MOSAIC_from_work/MASTER/MOSAIC_2015_MASTER_Aki_stata_20150721/Mosaic_master_file_from_stata.csv" + , fileEncoding='latin1') # as there is some weird encoding problems! + + +meta_data_cols = c("mosaic", "gender", "age", "adult", "flustat", "type" + , "obesity", "obese2", "height", "height_unit", "weight" + , "weight_unit", "visual_est_bmi", "bmi_rating") + + + +# check if these columns to select are present in the data +meta_data_cols%in%colnames(all_df) +all(meta_data_cols%in%colnames(all_df)) +metadata_all = all_df[, meta_data_cols] + + +# use regex +library(stringr) + +#========= +# sam +#========= +sam_regex = regex(".*_sam[1-3]{1}$", ignore_case = T) +sam_cols_i = str_extract(colnames(all_df), sam_regex) # not boolean +#sam_cols_b = colnames(all_df)%in%sam_cols_i # boolean + +sam_cols = colnames(all_df)[colnames(all_df)%in%sam_cols_i] + +# this contains log columns + daysamp_samXX: omitting these +sam_regex_log_days = regex("log|day.*_sam[1-3]{1}$", ignore_case = T, perl = T) +sam_cols_to_omit = sam_cols[grepl(sam_regex_log_days, sam_cols)]; sam_cols_to_omit + +sam_cols_clean = sam_cols[!sam_cols%in%sam_cols_to_omit]; sam_cols_clean +length(sam_cols_clean) + +if( length(sam_cols_clean) == length(sam_cols) - length(sam_cols_to_omit) ){ + cat("PASS: clean cols extracted" + , "\nNo. of clean SAM cols to extract:", length(sam_cols_clean)) +}else{ + cat("FAIL: length mismatch. Aborting further cols extraction" + , "Expected length:", length(sam_cols) - length(sam_cols_to_omit) + , "Got:", length(sam_cols_clean) ) +} + +sam_cols_to_extract = c(meta_data_cols, sam_cols_clean) + +cat("Extracting SAM cols + metadata_cols") + +if ( length(sam_cols_to_extract) == length(meta_data_cols) + length(sam_cols_clean) ){ + cat("Extracing", length(sam_cols_to_extract), "columns for sam") + sam_df = all_df[, sam_cols_to_extract] +}else{ + cat("FAIL: length mismatch" + , "Expeceted to extract:", length(meta_data_cols) + length(sam_cols_clean), "columns" + , "Got:", length(sam_cols_to_extract)) +} + +colnames_sam_df = colnames(sam_df); colnames_sam_df + + +#========= +# serum +#========= +serum_regex = regex(".*_serum[1-3]{1}$", ignore_case = T) +serum_cols_i = str_extract(colnames(all_df), serum_regex) # not boolean +#serum_cols_b = colnames(all_df)%in%serum_cols_i # boolean + +serum_cols = colnames(all_df)[colnames(all_df)%in%serum_cols_i] + +# this contains log columns + dayserump_serumXX: omitting these +serum_regex_log_days = regex("log|day.*_serum[1-3]{1}$", ignore_case = T, perl = T) +serum_cols_to_omit = serum_cols[grepl(serum_regex_log_days, serum_cols)]; serum_cols_to_omit + +serum_cols_clean = serum_cols[!serum_cols%in%serum_cols_to_omit]; serum_cols_clean +length(serum_cols_clean) + +if( length(serum_cols_clean) == length(serum_cols) - length(serum_cols_to_omit) ){ + cat("PASS: clean cols extracted" + , "\nNo. of clean serum cols to extract:", length(serum_cols_clean)) +}else{ + cat("FAIL: length mismatch. Aborting further cols extraction" + , "Expected length:", length(serum_cols) - length(serum_cols_to_omit) + , "Got:", length(serum_cols_clean) ) +} + +serum_cols_to_extract = c(meta_data_cols, serum_cols_clean) + +cat("Extracting SERUM cols + metadata_cols") + +if ( length(serum_cols_to_extract) == length(meta_data_cols) + length(serum_cols_clean) ){ + cat("Extracing", length(serum_cols_to_extract), "columns for serum") + serum_df = all_df[, serum_cols_to_extract] +}else{ + cat("FAIL: length mismatch" + , "Expeceted to extract:", length(meta_data_cols) + length(serum_cols_clean), "columns" + , "Got:", length(serum_cols_to_extract)) +} + +colnames_serum_df = colnames(serum_df); colnames_serum_df + +#========= +# npa +#========= +npa_regex = regex(".*_npa[1-3]{1}$", ignore_case = T) +npa_cols_i = str_extract(colnames(all_df), npa_regex) # not boolean +#npa_cols_b = colnames(all_df)%in%npa_cols_i # boolean + +npa_cols = colnames(all_df)[colnames(all_df)%in%npa_cols_i] + +# this contains log columns + daynpap_npaXX: omitting these +npa_regex_log_days = regex("log|day|vl_samptime|ct.*_npa[1-3]{1}$", ignore_case = T, perl = T) +npa_cols_to_omit = npa_cols[grepl(npa_regex_log_days, npa_cols)]; npa_cols_to_omit + +npa_cols_clean = npa_cols[!npa_cols%in%npa_cols_to_omit]; npa_cols_clean +length(npa_cols_clean) + +if( length(npa_cols_clean) == length(npa_cols) - length(npa_cols_to_omit) ){ + cat("PASS: clean cols extracted" + , "\nNo. of clean npa cols to extract:", length(npa_cols_clean)) +}else{ + cat("FAIL: length mismatch. Aborting further cols extraction" + , "Expected length:", length(npa_cols) - length(npa_cols_to_omit) + , "Got:", length(npa_cols_clean) ) +} + +npa_cols_to_extract = c(meta_data_cols, npa_cols_clean) + +cat("Extracting NPA cols + metadata_cols") + +if ( length(npa_cols_to_extract) == length(meta_data_cols) + length(npa_cols_clean) ){ + cat("Extracing", length(npa_cols_to_extract), "columns for npa") + npa_df = all_df[, npa_cols_to_extract] +}else{ + cat("FAIL: length mismatch" + , "Expeceted to extract:", length(meta_data_cols) + length(npa_cols_clean), "columns" + , "Got:", length(npa_cols_to_extract)) +} + +colnames_npa_df = colnames(npa_df); colnames_npa_df + + +colnames_check = as.data.frame(cbind(colnames_sam_df, colnames_serum_df, colnames_npa_df)) +tail(colnames_check) + +# unmatched lengths +#colnames_check[117,1] <- NA +#colnames_check[117,2] <- NA + +if ( ncol(sam_df) == ncol(serum_df) ){ + start = ncol(sam_df)+1 + extra_cols = start:ncol(npa_df) +} + +colnames_check_f = colnames_check +tail(colnames_check_f) + +for (i in extra_cols){ + for (j in 1:2) { + cat("\ni:", i + ,"\nj:", j) + colnames_check_f[i,j] <- NA + #colnames_check_f[i, j]< - NA + + } +} +tail(colnames_check_f) +# write file? + + +########################################################################## +# LF data +########################################################################## + +#========= +# lf data: sam +#========= +str(sam_df) +table(sam_df$obesity); table(sam_df$obese2) + +sam_df_adults = sam_df[sam_df$adult == 1,] + +cols_to_omit = c("adult", "flustat", "type", "obesity" + , "height", "height_unit", "weight", "weight_unit","visual_est_bmi", "bmi_rating") + +pivot_cols = meta_data_cols +pivot_cols = meta_data_cols[!meta_data_cols%in%cols_to_omit];pivot_cols + +if (length(pivot_cols) == length(meta_data_cols) - length(cols_to_omit)){ + cat("PASS: pivot cols successfully extracted") +}else{ + cat("FAIL: length mismatch! pivot cols could not be extracted" + , "\nExpected length:", length(meta_data_cols) - length(cols_to_omit) + , "\nGot:",length(pivot_cols) ) + quit() +} + +expected_rows_sam_lf = nrow(sam_df_adults) * (length(sam_df_adults) - length(pivot_cols)); expected_rows_sam_lf + +# using regex: +sam_adults_lf = sam_df_adults %>% + tidyr::pivot_longer(-all_of(pivot_cols), names_to = c("mediator", "sample_type", "timepoint"), + names_pattern = "(.*)_(.*)([1-3]{1})", + values_to = "value") + +if ((nrow(sam_lf) == expected_rows_sam_lf) & (sum(table(is.na(sam_adults_lf$mediator))) == expected_rows_sam_lf)) { + cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:" + , "\nNo. of rows: ", nrow(sam_lf) + , "\nNo. of cols: ", ncol(sam_lf))) +} else{ + cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator" + , "\nExpected no. of rows: ", expected_rows_sam_lf + , "\nGot: ", nrow(sam_lf) + , "\ncheck expected rows calculation!")) + quit() +} + + + + + + + + + + + + + + + +# remove unnecessary variables +rm(sam_regex, sam_regex_log_days, sam_cols, sam_cols_b, sam_cols_clean, sam_cols_i, sam_cols_to_extract, sam_cols_to_omit) +rm(serum_regex, serum_regex_log_days, serum_cols, serum_cols_clean, serum_cols_i, serum_cols_to_extract, serum_cols_to_omit) +rm(npa_regex, npa_regex_log_days, npa_cols, npa_cols_clean, npa_cols_i, npa_cols_to_extract, npa_cols_to_omit) +rm(all_df) +rm(colnames_check) + diff --git a/mosaic_bmi_test.R b/mosaic_bmi_test.R new file mode 100644 index 0000000..c20c0dc --- /dev/null +++ b/mosaic_bmi_test.R @@ -0,0 +1,157 @@ +df = read.csv("/home/backup/MOSAIC/MEDIATOR_Data/master_file/Mosaic_master_file_from_stata.csv" + , fileEncoding = "latin1" + , sep = ",") + +install.packages("readr") +library(readr) +df2 = read_csv("/home/backup/MOSAIC/MEDIATOR_Data/master_file/Mosaic_master_file_from_stata.csv" + , col_names = T) +foo = as.data.frame(colnames(df2)) +head(foo) +head(df2) + + +# sam +sam_df = read.csv("/home/backup/MOSAIC/MEDIATOR_Data/mediator_data_analysis/SAM-oct-2015/SAM_adults_publication/SAM_only.csv" + , fileEncoding = "latin1") + + + +# extract the 36 HC +# master file for HC: called "Mediators_for_HC.csv" in /home/tanu/MASTERS/Birkbeck/MSc_Project/MOSAIC/MEDIATOR_Data/master_file +all_healthy<- read.csv(file.choose()) + +serum_hc<- subset(all_healthy, Timepoint == "HC" & Sample == "Serum") +length(unique(serum_hc$MOSAIC)) # check:36 + +#===================== +# File for patients(comprehensive): called "Mosaic_master_file_from_stata.csv" +all_df <- read.csv("/home/pub/Work/MOSAIC/MOSAIC_from_work/MASTER/MOSAIC_2015_MASTER_Aki_stata_20150721/Mosaic_master_file_from_stata.csv" + , fileEncoding='latin1') # as there is some weird encoding problems! + + +meta_data_cols = c("mosaic", "gender", "age", "adult", "flustat", "type" + , "obesity", "obese2", "height", "height_unit", "weight" + , "weight_unit", "visual_est_bmi", "bmi_rating") + + + +# check if these columns to select are present in the data +meta_data_cols%in%colnames(all_df) +all(meta_data_cols%in%colnames(all_df)) +metadata_all = all_df[, meta_data_cols] + + +sam = all_df[, grepl("_sam1", colnames(all_df))] + + +# use regex +library(stringr) + + + + +serum_regex = regex(".*_serum[1-3]{1}$", ignore_case = T) +npa_regex = regex(".*_npa[1-3]{1}$", ignore_case = T) + +#========= +# sam +#========= +sam_regex = regex(".*_sam[1-3]{1}$", ignore_case = T) +sam_cols_i = str_extract(colnames(all_df), sam_regex) # not boolean +sam_cols_b = colnames(all_df)%in%sam_cols_i # boolean + +sam_cols = colnames(all_df)[colnames(all_df)%in%sam_cols_i] + +# this contains log columns as well as daysamp_samXX +sam_regex_log_days = regex("log|day.*_sam[1-3]{1}$", ignore_case = T, perl =T) +sam_cols_to_omit = sam_cols[grepl(sam_regex_log_days, sam_cols)]; sam_cols_to_omit + +sam_cols_clean = sam_cols[!sam_cols%in%sam_cols_to_omit]; sam_cols_clean +length(sam_cols_clean) + + +if( length(sam_cols_clean) == length(sam_cols) - length(sam_cols_to_omit) ){ + cat("PASS: clean cols extracted" + , "\nNo. of clean cols to extract", length(sam_cols_clean)) + +} + +sam_cols_to_extract = c(meta_data_cols, sam_cols_clean) + +if ( length(sam_cols_to_extract) == length(meta_data_cols) + length(sam_cols_clean) ){ + cat("Extracing", length(sam_cols_to_extract), "columns for sam") + sam_df = all_df[, sam_cols_to_extract] +}else{ + cat("FAIL: length mismatch" + , "Expeceted to extract:", length(meta_data_cols) + length(sam_cols_clean), "columns" + , "Got:", length(sam_cols_to_extract)) +} + +colnames_sam_df = colnames(sam_df); colnames_sam_df + + + +#========= +# serum +#========= +serum_cols_i = str_extract(colnames(all_df), serum_regex) +table(colnames(all_df)%in%serum_cols_i) +serum_cols = colnames(all_df)[colnames(all_df)%in%serum_cols_i] + +serum_cols_to_extract = c(meta_data_cols, serum_cols) + +if ( length(serum_cols_to_extract) == length(meta_data_cols) + length(serum_cols) ){ + cat("Extracing", length(serum_cols_to_extract), "columns for serum") + serum_df = all_df[, serum_cols_to_extract] +}else{ + cat("FAIL: length mismatch" + , "Expeceted to extract:", length(meta_data_cols) + length(serum_cols), "columns" + , "Got:", length(serum_cols_to_extract)) +} + +#========= +# npa +#========= +npa_cols_i= str_extract(colnames(all_df), npa_regex) +table(colnames(all_df)%in%npa_cols_i) +npa_cols = colnames(all_df)[colnames(all_df)%in%npa_cols_i] + +npa_cols_to_extract = c(meta_data_cols, npa_cols) + +if ( length(npa_cols_to_extract) == length(meta_data_cols) + length(npa_cols) ){ + cat("Extracing", length(npa_cols_to_extract), "columns for NPA") + npa_df = all_df[, npa_cols_to_extract] +}else{ + cat("FAIL: length mismatch" + , "Expeceted to extract:", length(meta_data_cols) + length(npa_cols), "columns" + , "Got:", length(npa_cols_to_extract)) +} + +################################# +#========= +# lf data: sam +#========= +sam_df_v2 = sam_df +sam_df = sam_df[1:10, ] +pivot_cols = meta_data_cols + +expected_rows_sam_lf = nrow(sam_df) * (length(sam_df) - length(pivot_cols)); expected_rows_sam_lf + +# using regex: +sam_lf = sam_df %>% + tidyr::pivot_longer(-all_of(pivot_cols), names_to = c("mediator", "sample_type", "timepoint"), + names_pattern = "(.*)_(.*)([1-3]{1})", + values_to = "value") + +if ((nrow(sam_lf) == expected_rows_sam_lf) & (sum(table(is.na(sam_lf$mediator))) == expected_rows_sam_lf)) { + cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:" + , "\nNo. of rows: ", nrow(sam_lf) + , "\nNo. of cols: ", ncol(sam_lf))) +} else{ + cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator" + , "\nExpected no. of rows: ", expected_rows_sam_lf + , "\nGot: ", nrow(sam_lf) + , "\ncheck expected rows calculation!")) + quit() +} \ No newline at end of file