correcting dtype for sfluv and h1n1v for data formatting clinical

This commit is contained in:
Tanushree Tunstall 2020-11-24 13:48:53 +00:00
parent 7529549bfc
commit 08e01abfb5
4 changed files with 52 additions and 461 deletions

View file

@ -225,36 +225,35 @@ sum(table(clinical_df$onset_initial_bin)) == tot_onset2ini
#=======================
# seasonal flu: sfluv
#=======================
if (! is.factor(clinical_df$sfluv)){
clinical_df$sfluv = as.factor(clinical_df$sfluv)
}
class(clinical_df$sfluv)
levels(clinical_df$sfluv)
# reassign as 0 and 1
table(clinical_df$sfluv)
table(clinical_df$asthma, clinical_df$sfluv)
# reassign
levels(clinical_df$sfluv) <- c("0", "0", "1")
clinical_df$sfluv = ifelse(clinical_df$sfluv == "yes", 1, 0)
table(clinical_df$sfluv)
table(clinical_df$asthma, clinical_df$sfluv)
# convert to integer
str(clinical_df$sfluv)
clinical_df$sfluv = as.integer(clinical_df$sfluv)
str(clinical_df$sfluv)
#=======================
# h1n1v
#=======================
if (! is.factor(clinical_df$h1n1v)){
clinical_df$h1n1v = as.factor(clinical_df$h1n1v)
}
class(clinical_df$h1n1v)
levels(clinical_df$h1n1v)
# reassign as 0 and 1
table(clinical_df$h1n1v)
table(clinical_df$asthma, clinical_df$h1n1v)
# reassign
levels(clinical_df$h1n1v) <- c("0", "0", "1")
clinical_df$h1n1v = ifelse(clinical_df$h1n1v == "yes", 1, 0)
table(clinical_df$h1n1v)
table(clinical_df$asthma, clinical_df$h1n1v)
# convert to integer
str(clinical_df$h1n1v)
clinical_df$h1n1v = as.integer(clinical_df$h1n1v)
str(clinical_df$h1n1v)
#=======================
# ethnicity
#=======================

View file

@ -1,329 +0,0 @@
#!/usr/bin/Rscript
getwd()
setwd('~/git/mosaic_2020/')
getwd()
########################################################################
# TASK: Extract relevant columns from mosaic adults data
# npa
########################################################################
#====================
# Input: source data for clinical
#====================
source("data_extraction_formatting_clinical.R")
#source("colnames_clinical_meds.R")
#=======================================
# Data for mediator to include in regression
#=======================================
cat("Extracting", length(sig_npa_cols), "mediator cols from fp_adults")
med_df = fp_adults[, c("mosaic", sig_npa_cols)]
# sanity checks
if ( sum(table(clinical_df$obesity)) & sum(table(clinical_df$age>=18)) & sum(table(clinical_df$death)) & sum(table(clinical_df$asthma)) == nrow(clinical_df) ){
cat("PASS: binary data obs are complete, n =", nrow(clinical_df))
}else{
cat("FAIL: Incomplete data for binary outcomes. Please check and decide!")
quit()
}
table(clinical_df$ia_exac_copd)
########################################################################
# Data extraction for regression
########################################################################
common_cols = names(clinical_df)[names(clinical_df)%in%names(med_df)]
cat("\nMerging clinical and mediator data for regression"
,"\nMerging on column:", common_cols)
reg_data = merge(clinical_df, med_df
, by = common_cols)
if (nrow(reg_data) == nrow(clinical_df) & nrow(med_df)){
cat("\nNo. of rows match, nrow =", nrow(clinical_df)
, "\nChecking ncols...")
if ( ncol(reg_data) == ncol(clinical_df) + ncol(med_df) - length(common_cols) ){
cat("\nNo. of cols match, ncol =", ncol(reg_data))
} else {
cat("FAIL: ncols mismatch"
, "Expected ncols:", ncol(clinical_df) + ncol(med_df) - length(common_cols)
, "\nGot:", ncol(reg_data))
}
} else {
cat("FAIL: nrows mismatch"
, "\nExpected nrows:", nrow(fp_adults))
}
########################################################################
# Reassign the copd and asthma status and do some checks
table(reg_data$ia_exac_copd); sum(is.na(reg_data$ia_exac_copd))
reg_data$ia_exac_copd[reg_data$ia_exac_copd< 1]<- 0
reg_data$ia_exac_copd[is.na(reg_data$ia_exac_copd)] <- 0
table(reg_data$ia_exac_copd); sum(is.na(reg_data$ia_exac_copd))
# check copd and asthma status
table(reg_data$ia_exac_copd, reg_data$asthma)
check_copd_and_asthma_1<- subset(reg_data, ia_exac_copd ==1 & asthma == 1) # check this is 3
# reassign these 3 so these are treated as non-asthmatics as copd with asthma is NOT TRUE asthma
reg_data$asthma[reg_data$ia_exac_copd == 1 & reg_data$asthma == 1]= 0
table(reg_data$ia_exac_copd, reg_data$asthma)
foo<- subset(reg_data, asthma==1 & ia_exac_copd ==1) # check that its 0
rm(check_copd_and_asthma_1, foo)
#=====================================================================
# count the resp scores
max_resp_score_table<- table(reg_data$max_resp_score)
max_resp_score_table
T1_resp_score_table<- table(reg_data$T1_resp_score)
T1_resp_score_table
T2_resp_score_table<- table(reg_data$T2_resp_score)
T2_resp_score_table
Inresp_sev<- table(reg_data$inresp_sev)
Inresp_sev
# Reassign the resp score so all 4 are replace by 3
reg_data$max_resp_score[reg_data$max_resp_score ==4 ] <- 3
revised_resp_score_table<- table(reg_data$max_resp_score)
revised_resp_score_table
reg_data$T1_resp_score[reg_data$T1_resp_score ==4 ] <- 3
revised_T1_resp_score_table<- table(reg_data$T1_resp_score)
revised_T1_resp_score_table
reg_data$T2_resp_score[reg_data$T2_resp_score == 4]<- 3
revised_T2_resp_score_table<- table(reg_data$T2_resp_score)
revised_T2_resp_score_table
reg_data$inresp_sev[reg_data$inresp_sev == 4]<- 3
revised_Inresp_sev<- table(reg_data$inresp_sev)
revised_Inresp_sev
#=====================================================================
# Remove these after checking
rm(max_resp_score_table, T1_resp_score_table, T2_resp_score_table, Inresp_sev
, revised_resp_score_table, revised_T1_resp_score_table, revised_T2_resp_score_table, revised_Inresp_sev)
#=====================================================================
# Binning
# "(": not inclusive
# "]": inclusive
#========
# age
#========
# Create categories of variables
reg_data$age = round(reg_data$age, digits = 0)
table(reg_data$age)
table(reg_data$asthma, reg_data$age)
min(reg_data$age); max(reg_data$age)
max_age_interval = round_any(max(reg_data$age), 10, f = ceiling)
max_age_interval
min_age = min(reg_data$age); min_age #19
min_age_interval = min_age - 1; min_age_interval
#age_bins = cut(reg_data$age, c(0,18,30,40,50,60,70,80,90))
age_bins = cut(reg_data$age, c(min_age_interval, 30, 40, 50, 60, 70, max_age_interval))
reg_data$age_bins = age_bins
dim(reg_data) # 133 27
# age_bins (to keep consistent with the results table)
class(reg_data$age_bins)
levels(reg_data$age_bins)
#"(18,30]" "(30,40]" "(40,50]" "(50,60]" "(60,70]" "(70,80]"
table(reg_data$asthma, reg_data$age_bins)
# (18,30] (30,40] (40,50] (50,60] (60,70] (70,80]
#0 25 17 25 14 11 1
#1 11 8 12 5 3 2
if (sum(table(reg_data$asthma, reg_data$age_bins)) == nrow(reg_data) ){
cat("PASS: age_bins assigned successfully")
}else{
cat("FAIL: no. mismatch when assigning age_bins")
quit()
}
# reassign
class(reg_data$age_bins)
levels(reg_data$age_bins) <- c("(18,30]","(30,40]","(40,50]","(50,80]","(50,80]","(50,80]")
table(reg_data$asthma, reg_data$age_bins)
table(reg_data$asthma, reg_data$age_bins)
# (18,30] (30,40] (40,50] (50,80]
#0 25 17 25 26
#1 11 8 12 9
sum(table(reg_data$asthma, reg_data$age_bins)) == nrow(reg_data)
#===========================
# O2 saturation binning
#===========================
reg_data$o2_sat_admis = round(reg_data$o2_sat_admis, digits = 0)
table(reg_data$o2_sat_admis)
tot_o2 = sum(table(reg_data$o2_sat_admis))- table(reg_data$o2_sat_admis)[["-1"]]
tot_o2
o2_sat_bin = cut(reg_data$o2_sat_admis, c(0,92,100))
reg_data$o2_sat_bin = o2_sat_bin
table(reg_data$o2_sat_bin)
sum(table(reg_data$o2_sat_bin)) == tot_o2
#===========================
# Onset to initial binning
#===========================
max_in = max(reg_data$onset_2_initial); max_in #23
min_in = min(reg_data$onset_2_initial) - 1 ; min_in # -6
tot_onset2ini = sum(table(reg_data$onset_2_initial))
tot_onset2ini
onset_initial_bin = cut(reg_data$onset_2_initial, c(min_in, 4, max_in))
reg_data$onset_initial_bin = onset_initial_bin
sum(table(reg_data$onset_initial_bin)) == tot_onset2ini
#=======================
# seasonal flu: sfluv
#=======================
# should be a factor
if (! is.factor(reg_data$sfluv)){
reg_data$sfluv = as.factor(reg_data$sfluv)
}
class(reg_data$sfluv) #[1] "factor"
levels(reg_data$sfluv)
table(reg_data$asthma, reg_data$sfluv)
# reassign
levels(reg_data$sfluv) <- c("0", "0", "1")
table(reg_data$asthma, reg_data$sfluv)
#=======================
# h1n1v
#=======================
# should be a factor
if (! is.factor(reg_data$h1n1v)){
reg_data$h1n1v = as.factor(reg_data$h1n1v)
}
class(reg_data$h1n1v) #[1] "factor"
levels(reg_data$h1n1v)
table(reg_data$asthma, reg_data$h1n1v)
# reassign
levels(reg_data$h1n1v) <- c("0", "0", "1")
table(reg_data$asthma, reg_data$h1n1v)
#=======================
# ethnicity
#=======================
class(reg_data$ethnicity) # integer
table(reg_data$asthma, reg_data$ethnicity)
reg_data$ethnicity[reg_data$ethnicity == 4] <- 2
table(reg_data$asthma, reg_data$ethnicity)
#=======================
# pneumonia
#=======================
class(reg_data$ia_cxr) # integer
# ia_cxr 2 ---> yes pneumonia (1)
# 1 ---> no (0)
# ! 1 or 2 -- > "unkown"
# reassign the pneumonia codes
#0: not performed
#1: normal
#2: findings consistent with pneumonia
#3: abnormal
#-1: not recorded
#-2: n/a specified by the clinician # not in the data...
#-3: unknown specified by clinician
table(reg_data$ia_cxr)
#-3 -1 0 1 2 3
#5 48 13 47 17 3
# change these first else recoding 0 will be a problem as 0 already exists, mind you -2 categ doesn't exist
reg_data$ia_cxr[reg_data$ia_cxr == -3 | reg_data$ia_cxr == -1 | reg_data$ia_cxr == 0 | reg_data$ia_cxr == 3 ] <- ""
table(reg_data$ia_cxr)
# 1 2
#69 47 17
reg_data$ia_cxr[reg_data$ia_cxr == 1] <- 0
reg_data$ia_cxr[reg_data$ia_cxr == 2] <- 1
table(reg_data$ia_cxr)
# 0 1
#69 47 17
#=======================
# smoking [tricky one]
#=======================
class(reg_data$smoking) # integer
table(reg_data$asthma, reg_data$smoking)
# orig
# -3 -1 1 2 3 4
#0 15 9 22 2 15 30
#1 4 2 13 0 4 17
# -3 -1 1 2 3 4
#0 14 9 20 2 15 30
#1 5 2 15 0 4 17
# never smoking, 4 and 2 -- > no (0)
#1 and 3 ---> yes (1)
#!-3 and -1 ---- > NA
################# smoking
#1: current daily ===> categ smoker(1)
#2: occasional =====> categ no smoker(0)
#3: ex-smoker ===> categ smoker(1)
#4: never =====> categ no smoker(0)
#-1: not recorded =====> categ blank (NA)
#-2: n/a specified by the clinician =====> categ blank (NA)
#-3: unknown specified by clinician=====> categ blank (NA)
table(reg_data$smoking)
#-3 -1 1 2 3 4
#19 11 35 2 19 47
# reassign the smoking codes
reg_data$smoking[reg_data$smoking == 4 | reg_data$smoking == 2 ] <- 0
reg_data$smoking[reg_data$smoking == 1 | reg_data$smoking == 3 ] <- 1
reg_data$smoking[reg_data$smoking == -1 | reg_data$smoking == -2 | reg_data$smoking == -3 ] <- ""
table(reg_data$smoking)
# 0 1
#30 49 54
table(reg_data$asthma, reg_data$smoking)
# orig
# 0 1
#0 24 32 37
#1 6 17 17
# 0 1
#0 23 32 35
#1 7 17 19
################################################################
#==================
# writing output file
#==================
outfile_name_reg = "reg_data_recoded_with_NA.csv"
outfile_reg = paste0(outdir, outfile_name_reg)
cat("Writing clinical file for regression:", outfile_reg)
#write.csv(reg_data, file = outfile_reg)
################################################################
rm(age_bins, max_age_interval, max_in, min_in, o2_sat_bin, onset_initial_bin, tot_o2, tot_onset2ini, meta_data_cols)

View file

@ -4,14 +4,8 @@ setwd('~/git/mosaic_2020/')
getwd()
########################################################################
# TASK: Run regression analysis
# npa
# clinical params and npa meds
########################################################################
#=================================================================================
# TO DO:
# Simple stats b/w obesity and non-obesity to consider including in reg analysis
# Include NPA statistically sign params
# Rerun graphs and plots without asthma?
#=================================================================================
#====================
# Input: source data
@ -25,27 +19,29 @@ table(fp_adults_na$ia_exac_copd==1 & fp_adults_na$asthma == 1)
table(clinical_df_ics$asthma)
if ( length(cols_to_extract) == length(clinical_cols) + length(sig_npa_cols) ){
cat("PASS: extracting clinical and sign npa cols")
} else{
cat("FAIL: could not find cols to extract")
quit()
}
fp_adults_reg = fp_adults[, cols_to_extract]
fp_adults_reg_na = fp_adults_na[, cols_to_extract]
#--------------------
# Data reassignment
#--------------------
my_data = clinical_df_ics
my_data_na = clinical_df_ics_na
my_data = fp_adults_reg
my_data_na = fp_adults_reg_na
table(my_data$ia_exac_copd==1 & my_data$asthma == 1)
table(my_data_na$ia_exac_copd==1 & my_data_na$asthma == 1)
# clear variables
#rm(fp_adults, fp_adults_na)
rm(fp_adults, fp_adults_na, clinical_df_ics, clinical_df_ics_na)
#########################################################################
if ( names(which(lapply(my_data, class) == "character")) == "mosaic" ){
cat("Character class for 1 column only:", "mosaic")
}else{
cat("More than one character class detected: Resolve!")
quit()
}
#============================
# Identifying column types: Reg data
#===========================
@ -57,6 +53,23 @@ my_vars = colnames(my_reg_data)
my_vars
lapply(my_reg_data, class)
check_int_vars = my_vars[lapply(my_reg_data, class)%in%c("integer")]
check_num_vars = my_vars[lapply(my_reg_data, class)%in%c("numeric")]
check_charac_vars = my_vars[lapply(my_reg_data, class)%in%c("character")]
check_factor_vars = my_vars[lapply(my_reg_data, class)%in%c("factor")]
cat("\nNo. of int cols:", length(check_int_vars)
, "\nNo. of num cols:", length(check_num_vars)
, "\nNo. of char cols:", length(check_charac_vars)
, "\nNo. of factor cols:", length(check_factor_vars)
)
# convert char vals to int as these should be int
my_reg_data[,check_charac_vars] = lapply(my_reg_data[,check_charac_vars], as.integer)
str(my_reg_data$sfluv)
numerical_vars = c("age"
, "vl_pfu_ul_npa1"
, "los"
@ -64,6 +77,11 @@ numerical_vars = c("age"
, "onsfindeath"
, "o2_sat_admis")
my_reg_data[numerical_vars] <- lapply(my_reg_data[numerical_vars], as.numeric)
my_reg_params = my_vars

View file

@ -1,97 +0,0 @@
#!/usr/bin/Rscript
getwd()
setwd('~/git/mosaic_2020/')
getwd()
########################################################################
# TASK: Run regression analysis
# npa
########################################################################
#=================================================================================
# TO DO:
# Simple stats b/w obesity and non-obesity to consider including in reg analysis
# Include NPA statistically sign params
# Rerun graphs and plots without asthma?
#=================================================================================
#====================
# Input: source data
#====================
source("data_extraction_formatting_clinical.R")
rm(fp_adults, metadata_all)
########################################################################
my_data = reg_data
#########################################################################
# check factor of each column
lapply(my_data, class)
character_vars <- lapply(my_data, class) == "character"
character_vars
table(character_vars)
factor_vars <- lapply(my_data, class) == "factor"
table(factor_vars)
my_data[, character_vars] <- lapply(my_data[, character_vars], as.factor)
factor_vars <- lapply(my_data, class) == "factor"
factor_vars
table(factor_vars)
# check again
lapply(my_data, class)
table(my_data$ethnicity)
my_data$ethnicity = as.factor(my_data$ethnicity)
class(my_data$ethnicity)
colnames(my_data)
reg_param = c("age"
, "age_bins"
#, "death" # outcome
, "asthma"
, "obesity"
, "gender"
, "los"
, "o2_sat_admis"
#, "logistic_outcome"
#, "steroid_ics"
, "ethnicity"
, "smoking"
, "sfluv"
, "h1n1v"
, "ia_cxr"
, "max_resp_score"
, "T1_resp_score"
, "com_noasthma"
, "onset_initial_bin")
for(i in reg_param) {
# print (i)
p_form = as.formula(paste("death ~ ", i ,sep = ""))
model_reg = glm(p_form , family = binomial, data = my_data)
print(summary(model_reg))
print(exp(cbind(OR = coef(model_reg), confint(model_reg))))
#print (PseudoR2(model_reg))
cat("=================================================================================\n")
}
full_mod = glm(death ~ asthma +
gender +
age_bins +
los +
#ethnicity +
onset_initial_bin +
o2_sat_bin +
com_noasthma +
obesity +
#ia_cxr +
smoking +
#sfluv +
#h1n1v
max_resp_score +
T1_resp_score +
, family = "binomial", data = my_data)
summary(full_mod)