added loess data in read_data.R and plotting scripts for loess

This commit is contained in:
Tanushree Tunstall 2020-10-23 14:27:48 +01:00
parent 8a2f9cb5f0
commit afd649d504
5 changed files with 716 additions and 8 deletions

View file

@ -27,12 +27,10 @@ rm(my_data)
output_plots = paste0(outdir_plots, "output_plots.pdf") output_plots = paste0(outdir_plots, "output_plots.pdf")
corr_and_hmap = paste0(outdir_plots, "corr_hmap.pdf") corr_and_hmap = paste0(outdir_plots, "corr_hmap.pdf")
#%%======================================================== ############################################################
# read file
# data assignment for plots # data assignment for plots
wf = wf_data wf = wf_data
lf = lf_data lf = lf_data
#===================== #=====================
# data for plots: LF # data for plots: LF
#===================== #=====================

247
data_formatting_loess.R Executable file
View file

@ -0,0 +1,247 @@
#!/usr/bin/Rscript
getwd()
setwd('~/git/covid_analysis/')
getwd()
############################################################
# TASK: data cleaning and extraction: for loess plots
############################################################
# source data
source("read_data.R")
# clear unwanted variables
rm(lf_data, wf_data)
#==================================
# output: formatted and clean data: loess
#==================================
outfile_icu_wf = paste0(datadir,"/icu_covid_wf_v3_loess.csv")
outfile_icu_lf = paste0(datadir,"/icu_covid_lf_v3_loess.csv")
outfile_colnames = paste0(datadir, "/colnames_check_v3_loess.csv")
#%%========================================================
colnames_loess = as.data.frame(colnames(my_data))
# some numerical cols are characters, change these
#my_data <- as.data.frame(sapply(my_data, function(x) as.numeric(as.character((x)))))
#str(my_data)
# colnames
all_cols_loess = as.data.frame(colnames(my_data))
#write.csv(all_cols_loess, "colnames_loess.csv")
#==================================
# select the mediators to analyse
#==================================
cols_to_select = c("id",
"sRAGEpgmLt1",
"sICAM1ngmLt1",
"PSELECTINngmLt1",
"sVCAM1ngmLt1",
"Angiopoietin2pgmLt1",
"sESelectinngmLt1",
"sESelectinngmLt2",
"Angiopoietin2pgmLt2",
"sRAGEpgmLt2",
"sICAM1ngmLt2",
"PSELECTINngmLt2",
"sVCAM1ngmLt2",
"sESelectinngmLt3",
"Angiopoietin2pgmLt3",
"sRAGEpgmLt3",
"sICAM1ngmLt3",
"PSELECTINngmLt3",
"sVCAM1ngmLt3",
"days_from_symptons_onset_t1",
"days_from_hospitalization_t1",
"outcomes0death1recovery2other",
"PF_t1",
"PF_t2" ,
"PF_t3" ,
"studygroup0coorteA1coorteB2coorteC")
# check if these columns to select are present in the data
cols_to_select%in%colnames(my_data)
all(cols_to_select%in%colnames(my_data))
table(my_data$studygroup0coorteA1coorteB2coorteC)
# subset
my_df = my_data[,cols_to_select]
dim(my_df)
# some numerical cols are characters, change these
str(my_df)
my_df <- as.data.frame(sapply(my_df, function(x) as.numeric(as.character((x)))))
str(my_df)
# add column name subject_id with "S" prefix to id or simply add it to id
my_df$id = paste0("S", my_df$id)
# assign nicer colnames
original_colnames = colnames(my_df)
orig_cols = as.data.frame(colnames(my_df))
my_colnames = c("id",
"sRAGE_pgmL_t1",
"sICAM1_ngmL_t1",
"PSelectin_ngmL_t1",
"sVCAM1_ngmL_t1",
"Angiopoietin2_pgmL_t1",
"sESelectin_ngmL_t1",
"sESelectin_ngmL_t2",
"Angiopoietin2_pgmL_t2",
"sRAGE_pgmL_t2",
"sICAM1_ngmL_t2",
"PSelectin_ngmL_t2",
"sVCAM1_ngmL_t2",
"sESelectin_ngmL_t3",
"Angiopoietin2_pgmL_t3",
"sRAGE_pgmL_t3",
"sICAM1_ngmL_t3",
"PSelectin_ngmL_t3",
"sVCAM1_ngmL_t3",
"days_from_symptons_onset_t1",
"days_from_hospitalization_t1",
"outcomes",
"PF_units_t1",
"PF_units_t2" ,
"PF_units_t3" ,
"studygroup")
if (length(original_colnames) == length(my_colnames) && all(cols_to_select%in%colnames(my_data))){
print("PASS: length of colnames match. Assigning clean colnames")
colnames(my_df) = my_colnames
revised_colnames = colnames(my_df)
colnames_check = as.data.frame(cbind(original_colnames, revised_colnames))
} else{
cat(paste0("FAIL:length mismatch when assigning colnames"
, "\nExpected length of colnames: ", length(original_colnames)
, "\nGot: ", length(my_colnames)))
quit()
}
print(colnames(my_df))
n_patients = length(unique(my_df$id))
print(paste0("Total no. of patients:", n_patients))
table(my_df$studygroup)
table(my_df$outcomes)
table(my_df$studygroup, my_df$outcomes)
#%% subset only icu patients
my_df_icu = my_df[my_df$studygroup == 0,]
n_icupatients = length(unique(my_df_icu$id))
cat(paste0("Total no. of rows in original df:", nrow(my_df)
, "\nTotal no. of unique patients:",n_patients
, "\nTotal no. of ICU patients:", n_icupatients))
table(my_df_icu$studygroup, my_df_icu$outcomes)
tab1 = table(my_df_icu$studygroup, my_df_icu$outcomes)
cat(paste0("no. of icu patients who"
, "\ndied:", tab1[1], " ~ ", tab1[1]/n_icupatients*100, "%"
, "\nrecovered:", tab1[2]," ~ ", tab1[2]/n_icupatients*100, "%"))
#, "\nother:", tab1[3], " ~ ", tab1[3]/n_icupatients*100, "%"))
table(my_df$studygroup)
#=====================================================
#=========
# lf data
#=========
pivot_cols = c("id"
, "studygroup"
, "days_from_symptons_onset_t1"
, "days_from_hospitalization_t1"
, "outcomes")
expected_rows_lf = nrow(my_df_icu) * (length(my_df_icu) - length(pivot_cols))
# using regex:
df_lf = my_df_icu %>%
tidyr::pivot_longer(-all_of(pivot_cols), names_to = c("mediator", "units", "timepoint"),
names_pattern = "(.*)_(.*)_(.*)",
values_to = "value")
if ((nrow(df_lf) == expected_rows_lf) & (sum(table(is.na(df_lf$mediator))) == expected_rows_lf)) {
cat(paste0("PASS: long format data has correct no. of rows and NA in mediator:"
, "\nNo. of rows: ", nrow(df_lf)
, "\nNo. of cols: ", ncol(df_lf)))
} else{
cat(paste0("FAIL:long format data has unexpected no. of rows or NAs in mediator"
, "\nExpected no. of rows: ", expected_rows_lf
, "\nGot: ", nrow(df_lf)
, "\ncheck expected rows calculation!"))
quit()
}
class(df_lf) # hmmm
str(df_lf)
class(as.data.frame(df_lf))
str(as.data.frame(df_lf))
# COMMENT: slight difference in class and structure b/w the outout from pivot and when you convert to df
# I will use the df as I am familiar with it!
lf_df = as.data.frame(df_lf)
class(lf_df)
str(lf_df)
# sort by mediator and timepoint
lf_df = lf_df[order(lf_df$mediator, lf_df$timepoint),]
table(is.na(lf_df$mediator))
#=========
# wf data
#=========
# icu data is your wf data
# sort icu data by columnames
auto_col_order = order(names(my_df_icu))
#my_col_order = c(1,25, 24, 20, 6, 9, 15, 21, 22, 23, 4, 12, 18, 7, 8, 14, 3, 11, 17, 2, 10, 16, 5, 13, 19)
my_col_order = c(1, 26, 20, 21, 22
, 23, 24, 25
, 6, 9, 15
, 2, 10, 16
, 4, 12, 18
, 5, 13, 19
, 7, 8, 14
, 3, 11, 17)
if(length(auto_col_order) == length(my_col_order)){
print("PASS: column order successfully generated. Reordering column in wf data")
wf_df = my_df_icu[, my_col_order]
} else{
cat(paste0("FAIL:length mismatch of column orders"
, "\nExpected column order for: ", length(auto_col_order)
, "\nGot:", length(my_col_order)))
quit()
}
#all.equal(my_df_icu, wf_df)
#===========================================================
#%% write icu files
# lf_data
write.csv(lf_df, outfile_icu_lf, row.names = F)
cat(paste0("Finsihed wrting lf data:"
, "\nNo. of rows: ", nrow(lf_df)
, "\nNo. of cols: ", ncol(lf_df)))
# column names to check
write.csv(colnames_check, outfile_colnames, row.names = F)
cat(paste0("Finsihed wrting colnames original and revised:"
, "\nNo. of rows: ", nrow(colnames_check)
, "\nNo. of cols: ", ncol(colnames_check)))
# wf_data: only original
write.csv(wf_df, outfile_icu_wf, row.names = F)
cat(paste0("\nFinsihed wrting wf data:"
, "\nNo. of rows: ", nrow(wf_df)
, "\nNo. of cols: ", ncol(wf_df)))
# COMMENT: wf_data for scaled values not written out!
#=======================================================
# end of script

View file

@ -0,0 +1,226 @@
#!/usr/bin/Rscript
getwd()
setwd('~/git/covid_analysis/')
getwd()
############################################################
# TASK: Loess plots for days into hospital till T1
############################################################
#==========================================================
#=============
# input:source data
#=============
source("read_data.R")
# clear unwanted variables
rm(my_data, wf_data, lf_data)
#=============
# Output
#=============
output_plots_loess_hosp = paste0(outdir_plots, "output_plots_v3_loess_hosp.pdf")
#%%========================================================
#=====================
# data for plots
#=====================
# remove PF
table(lf_data_loess$mediator)
lf_loess = lf_data_loess[lf_data_loess$mediator!= "PF",]
table(lf_loess$mediator)
#%=======================================================
hosp_days_min = min(lf_loess$days_from_hospitalization_t1); hosp_days_min
hosp_days_max = max(lf_loess$days_from_hospitalization_t1);hosp_days_max
my_xscale_hosp = seq(hosp_days_min , hosp_days_max, 5)
my_xscale_hosp
#####################################################################
# 95% CI: t1_data
# days_from_hospitalization_t1
#####################################################################
lf_loess_t1 = lf_loess[lf_loess$timepoint == "t1",]
# Output plots as one pdf
cat("Output plots will be in:", output_plots_loess_hosp)
pdf(output_plots_loess_hosp, width = 15, height = 8)
#-----------
# linear
#-----------
p1_hosp = ggplot(lf_loess_t1, aes(x = days_from_hospitalization_t1
, y = value
, colour = factor(outcomes))) +
#geom_point() +
geom_smooth(method = "loess", size = 1.5, na.rm = T) +
facet_wrap(~mediator, nrow = 2, scales = "free_y")+
labs(title = "Hospital days into t1: Linear scale and 95% CI"
, x = "Days from hospitalisation to t1"
, y = "T1 Levels")+
scale_x_continuous(breaks = my_xscale_hosp, limits = c(hosp_days_min , hosp_days_max))+
scale_colour_discrete(name = "Patient outcome"
, labels = c("Death", "Recovered"))+
theme(axis.text.x = element_text(size = 13)
, axis.text.y = element_text(size = 13
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = 13)
, axis.title.y = element_text(size = 13)
, plot.title = element_text(size = 15, hjust = 0.5)
, strip.text.x = element_text(size = 13, colour = "black")
, legend.title = element_text(color = "black", size = 13)
, legend.text = element_text(size = 13)
, legend.position = "right"
, legend.direction = "vertical")
p1_hosp
#-----------
# log
#-----------
p2_hosp = ggplot(lf_loess_t1, aes(x = days_from_hospitalization_t1
, y = value
, colour = factor(outcomes))) +
scale_y_log10()+
#geom_point() +
geom_smooth(method = "loess", size = 1.5, na.rm = T) +
facet_wrap(~mediator, nrow = 2, scales = "free_y")+
labs(title = "Hospital days into t1: Log scale and 95% CI"
, x = "Days from hospitalisation to t1"
, y = "T1 Levels (Log10)")+
scale_x_continuous(breaks = my_xscale_hosp, limits = c(hosp_days_min , hosp_days_max))+
scale_colour_discrete(name = "Patient outcome"
, labels = c("Death", "Recovered"))+
theme(axis.text.x = element_text(size = 13)
, axis.text.y = element_text(size = 13
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = 13)
, axis.title.y = element_text(size = 13)
, plot.title = element_text(size = 15, hjust = 0.5)
, strip.text.x = element_text(size = 13, colour = "black")
, legend.title = element_text(color = "black", size = 13)
, legend.text = element_text(size = 13)
, legend.position = "right"
, legend.direction = "vertical")
p2_hosp
#####################################################################
# 50% CI: t1_data
# days_from_hospitalization_t1
#####################################################################
#-----------
# linear
#-----------
p3_hosp = ggplot(lf_loess_t1, aes(x = days_from_hospitalization_t1
, y = value
, colour = factor(outcomes))) +
#geom_point() +
geom_smooth(method = "loess", size = 1.5, na.rm = T, level = 0.50) +
facet_wrap(~mediator, nrow = 2, scales = "free_y")+
labs(title = "Hospital days into t1: Linear scale and 50% CI"
, x = "Days from hospitalisation to t1"
, y = "T1 Levels") +
scale_x_continuous(breaks = my_xscale_hosp, limits = c(hosp_days_min , hosp_days_max))+
scale_colour_discrete(name = "Patient outcome"
, labels = c("Death", "Recovered"))+
theme(axis.text.x = element_text(size = 13)
, axis.text.y = element_text(size = 13
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = 13)
, axis.title.y = element_text(size = 13)
, plot.title = element_text(size = 15, hjust = 0.5)
, strip.text.x = element_text(size = 13, colour = "black")
, legend.title = element_text(color = "black", size = 13)
, legend.text = element_text(size = 13)
, legend.position = "right"
, legend.direction = "vertical")
p3_hosp
#-----------
# log
#-----------
p4_hosp = ggplot(lf_loess_t1, aes(x = days_from_hospitalization_t1
, y = value
, colour = factor(outcomes))) +
scale_y_log10()+
#geom_point() +
geom_smooth(method = "loess", size = 1.5, na.rm = T, level = 0.50) +
facet_wrap(~mediator, nrow = 2, scales = "free_y")+
labs(title = "Hospital days into t1: Log scale and 50% CI"
, x = "Days from hospitalisation to t1"
, y = "T1 Levels (Log10)")+
scale_x_continuous(breaks = my_xscale_hosp, limits = c(hosp_days_min , hosp_days_max))+
scale_colour_discrete(name = "Patient outcome"
, labels = c("Death", "Recovered"))+
theme(axis.text.x = element_text(size = 13)
, axis.text.y = element_text(size = 13
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = 13)
, axis.title.y = element_text(size = 13)
, plot.title = element_text(size = 15, hjust = 0.5)
, strip.text.x = element_text(size = 13, colour = "black")
, legend.title = element_text(color = "black", size = 13)
, legend.text = element_text(size = 13)
, legend.position = "right"
, legend.direction = "vertical")
p4_hosp
dev.off()
#####################################################################
# 95% CI: Combined data *** only if required
# days_from_hospitalization_t1
#####################################################################
#-----------
# linear
#-----------
#p1_all_hosp = ggplot(lf_loess, aes(x = days_from_hospitalization_t1
# , y = value
# , colour = factor(outcomes))) +
# #geom_point() +
# geom_smooth(method = "loess", size = 1.5, na.rm = T, level = 0.90) +
# facet_wrap(~mediator, nrow = 2, scales = "free_y")+
# labs(title = "Hospital days into t1: linear scale and 95% CI"
# , x = "Days from hospitalisation to t1"
# , y = "Combined Levels")+
# scale_x_continuous(breaks = my_xscale_hosp, limits = c(hosp_days_min , hosp_days_max))+
# scale_colour_discrete(name = "Patient outcome"
# , labels = c("Death", "Recovered"))
#p1_all_hosp
#-----------
# log
#-----------
#p2_all_hosp = ggplot(lf_loess, aes(x = days_from_hospitalization_t1
# , y = value
# , colour = factor(outcomes))) +
# scale_y_log10()+
# #geom_point() +
# geom_smooth(method = "loess", size = 1.5, na.rm = T) +
# facet_wrap(~mediator, nrow = 2, scales = "free_y")+
# labs(title = "Hospital days into t1: Log scale and 95% CI"
# , x = "Days from hospitalisation to t1"
# , y = "Combined Levels (Log10)")+
# scale_x_continuous(breaks = my_xscale_hosp, limits = c(hosp_days_min , hosp_days_max))+
# scale_colour_discrete(name = "Patient outcome"
# , labels = c("Death", "Recovered"))
#p2_all_hosp

227
loess_plots_symptom_onset.R Executable file
View file

@ -0,0 +1,227 @@
#!/usr/bin/Rscript
getwd()
setwd('~/git/covid_analysis/')
getwd()
############################################################
# TASK: Loess plots: symptom onset
############################################################
#=============
# input:source data
#=============
source("read_data.R")
# clear unwanted variables
rm(my_data, wf_data, lf_data)
#=============
# Output
#=============
output_plots_loess_symp = paste0(outdir_plots, "output_plots_v3_loess_symp.pdf")
############################################################
#=====================
# data for plots
#=====================
# remove PF
table(lf_data_loess$mediator)
lf_loess = lf_data_loess[lf_data_loess$mediator!= "PF",]
table(lf_loess$mediator)
#%%=================================================================
symp_days_min = min(lf_loess$days_from_symptons_onset_t1); symp_days_min
symp_days_max = max(lf_loess$days_from_symptons_onset_t1);symp_days_max
my_xscale = seq(symp_days_min , symp_days_max, 5)
my_xscale
#####################################################################
# 95% CI: t1_data
# days_from_symptons_onset_t1
#####################################################################
lf_loess_t1 = lf_loess[lf_loess$timepoint == "t1",]
# Output plots as one pdf
cat("Output plots will be in:", output_plots_loess_symp)
pdf(output_plots_loess_symp, width = 15, height = 8)
#-----------
# linear
#-----------
p1 = ggplot(lf_loess_t1, aes(x = days_from_symptons_onset_t1
, y = value
, colour = factor(outcomes))) +
#geom_point() +
geom_smooth(method = "loess", size = 1.5, na.rm = T) +
facet_wrap(~mediator, nrow = 2, scales = "free_y")+
labs(title = "Days into t1: Linear scale and 95% CI"
, x = "Days from symptom onset to t1"
, y = "T1 Levels")+
scale_x_continuous(breaks = my_xscale, limits = c(symp_days_min , symp_days_max))+
scale_colour_discrete(name = "Patient outcome"
, labels = c("Death", "Recovered")) +
theme(axis.text.x = element_text(size = 13)
, axis.text.y = element_text(size = 13
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = 13)
, axis.title.y = element_text(size = 13)
, plot.title = element_text(size = 15, hjust = 0.5)
, strip.text.x = element_text(size = 13, colour = "black")
, legend.title = element_text(color = "black", size = 13)
, legend.text = element_text(size = 13)
, legend.position = "right"
, legend.direction = "vertical")
p1
#-----------
# log
#-----------
p2 = ggplot(lf_loess_t1, aes(x = days_from_symptons_onset_t1
, y = value
, colour = factor(outcomes))) +
scale_y_log10()+
#geom_point() +
geom_smooth(method = "loess", size = 1.5, na.rm = T) +
facet_wrap(~mediator, nrow = 2, scales = "free_y")+
labs(title = "Days into t1: Log scale and 95% CI"
, x = "Days from symptom onset to t1"
, y = "T1 Levels (Log10)")+
scale_x_continuous(breaks = my_xscale, limits = c(symp_days_min , symp_days_max))+
scale_colour_discrete(name = "Patient outcome"
, labels = c("Death", "Recovered"))+
theme(axis.text.x = element_text(size = 13)
, axis.text.y = element_text(size = 13
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = 13)
, axis.title.y = element_text(size = 13)
, plot.title = element_text(size = 15, hjust = 0.5)
, strip.text.x = element_text(size = 13, colour = "black")
, legend.title = element_text(color = "black", size = 13)
, legend.text = element_text(size = 13)
, legend.position = "right"
, legend.direction = "vertical")
p2
#####################################################################
# 50% CI: t1_data
# days_from_symptons_onset_t1
#####################################################################
#-----------
# linear
#-----------
p3 = ggplot(lf_loess_t1, aes(x = days_from_symptons_onset_t1
, y = value
, colour = factor(outcomes))) +
#geom_point() +
geom_smooth(method = "loess", size = 1.5, na.rm = T, level = 0.50) +
facet_wrap(~mediator, nrow = 2, scales = "free_y")+
labs(title = "Days into t1: Linear scale and 50% CI"
, x = "Days from symptom onset to t1"
, y = "T1 Levels")+
scale_x_continuous(breaks = my_xscale, limits = c(symp_days_min , symp_days_max))+
scale_colour_discrete(name = "Patient outcome"
, labels = c("Death", "Recovered"))+
theme(axis.text.x = element_text(size = 13)
, axis.text.y = element_text(size = 13
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = 13)
, axis.title.y = element_text(size = 13)
, plot.title = element_text(size = 15, hjust = 0.5)
, strip.text.x = element_text(size = 13, colour = "black")
, legend.title = element_text(color = "black", size = 13)
, legend.text = element_text(size = 13)
, legend.position = "right"
, legend.direction = "vertical")
p3
#-----------
# log
#-----------
p4 = ggplot(lf_loess_t1, aes(x = days_from_symptons_onset_t1
, y = value
, colour = factor(outcomes))) +
scale_y_log10()+
#geom_point() +
geom_smooth(method = "loess", size = 1.5, na.rm = T, level = 0.5) +
facet_wrap(~mediator, nrow = 2, scales = "free_y")+
labs(title = "Days into t1: Log scale and 50% CI"
, x = "Days from symptom onset to t1"
, y = "T1 Levels (Log10)")+
scale_x_continuous(breaks = my_xscale, limits = c(symp_days_min , symp_days_max))+
scale_colour_discrete(name = "Patient outcome"
, labels = c("Death", "Recovered")) +
theme(axis.text.x = element_text(size = 13)
, axis.text.y = element_text(size = 13
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = 13)
, axis.title.y = element_text(size = 13)
, plot.title = element_text(size = 15, hjust = 0.5)
, strip.text.x = element_text(size = 13, colour = "black")
, legend.title = element_text(color = "black", size = 13)
, legend.text = element_text(size = 13)
, legend.position = "right"
, legend.direction = "vertical")
p4
dev.off()
#####################################################################
# 95% CI: Combined data *** only if required
# days_from_symptons_onset_t1
#####################################################################
#-----------
# linear
#-----------
#p1_all = ggplot(lf_loess, aes(x = days_from_symptons_onset_t1
# , y = value
# , colour = factor(outcomes))) +
# #geom_point() +
# geom_smooth(method = "loess", size = 1.5, na.rm = T) +
# facet_wrap(~mediator, nrow = 2, scales = "free_y")+
# labs(title = "Days into t1: linear scale and 95% CI"
# , x = "Days from symptom onset to t1"
# , y = "Combined Levels")+
# scale_x_continuous(breaks = my_xscale, limits = c(symp_days_min , symp_days_max))+
# scale_colour_discrete(name = "Patient outcome"
# , labels = c("Death", "Recovered"))
#p1_all
#-----------
# log
#-----------
#p2_all = ggplot(lf_loess, aes(x = days_from_symptons_onset_t1
# , y = value
# , colour = factor(outcomes))) +
# scale_y_log10()+
# #geom_point() +
# geom_smooth(method = "loess", size = 1.5, na.rm = T) +
# facet_wrap(~mediator, nrow = 2, scales = "free_y")+
# labs(title = "Days into t1: Log scale and 95% CI"
# , x = "Days from symptom onset to t1"
# , y = "Combined Levels (Log10)")+
# scale_x_continuous(breaks = my_xscale, limits = c(symp_days_min , symp_days_max))+
# scale_colour_discrete(name = "Patient outcome"
# , labels = c("Death", "Recovered"))
#p2_all

View file

@ -17,17 +17,27 @@ outdir_stats = "~/git/covid_data/output/stats/"
#========================================================== #==========================================================
# input data files # input data files
infile_covid = paste0(datadir,"/covid19_v3.csv") infile_covid = paste0(datadir, "/covid19_v3.csv")
infile_icu_wf = paste0(datadir, "/icu_covid_wf_v3.csv")
infile_icu_lf = paste0(datadir, "/icu_covid_lf_v3.csv")
infile_icu_wf_loess = paste0(datadir, "/icu_covid_wf_v3_loess.csv")
infile_icu_lf_loess = paste0(datadir, "/icu_covid_lf_v3_loess.csv")
infile_icu_wf = paste0(datadir,"/icu_covid_wf_v3.csv")
infile_icu_lf = paste0(datadir,"/icu_covid_lf_v3.csv")
#%%======================================================== #%%========================================================
# read files # read files
my_data = read.csv(infile_covid, stringsAsFactors = F) my_data = read.csv(infile_covid, stringsAsFactors = F)
wf_data = read.csv(infile_icu_wf , stringsAsFactors = F) wf_data = read.csv(infile_icu_wf, stringsAsFactors = F)
dim(wf_data) dim(wf_data)
lf_data = read.csv(infile_icu_lf , stringsAsFactors = F) lf_data = read.csv(infile_icu_lf, stringsAsFactors = F)
dim(lf_data) dim(lf_data)
wf_data_loess = read.csv(infile_icu_wf_loess, stringsAsFactors = F)
dim(wf_data_loess)
lf_data_loess = read.csv(infile_icu_lf_loess, stringsAsFactors = F)
dim(lf_data_loess)
#%%======================================================== #%%========================================================