#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Mar 6 13:41:54 2022 @author: tanu """ import os, sys import pandas as pd import numpy as np import pprint as pp from copy import deepcopy from sklearn import linear_model from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.naive_bayes import BernoulliNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.neural_network import MLPClassifier from xgboost import XGBClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import SGDClassifier from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.compose import make_column_transformer from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score from sklearn.metrics import jaccard_score from sklearn.metrics import make_scorer from sklearn.metrics import classification_report from sklearn.metrics import average_precision_score from sklearn.model_selection import cross_validate from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold from sklearn.pipeline import Pipeline from sklearn.pipeline import make_pipeline from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import itertools #import seaborn as sns import matplotlib.pyplot as plt import numpy as np print(np.__version__) print(pd.__version__) from statistics import mean, stdev, median, mode #from imblearn.over_sampling import RandomOverSampler #from imblearn.over_sampling import SMOTE #from imblearn.pipeline import Pipeline #from sklearn.datasets import make_classification from sklearn.model_selection import cross_validate, cross_val_score from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.ensemble import AdaBoostClassifier #from imblearn.combine import SMOTEENN #from imblearn.under_sampling import EditedNearestNeighbours from sklearn.model_selection import GridSearchCV from sklearn.base import BaseEstimator scoring_fn = ({'accuracy' : make_scorer(accuracy_score) , 'fscore' : make_scorer(f1_score) , 'mcc' : make_scorer(matthews_corrcoef) , 'precision' : make_scorer(precision_score) , 'recall' : make_scorer(recall_score) , 'roc_auc' : make_scorer(roc_auc_score) , 'jcc' : make_scorer(jaccard_score) }) rs = {'random_state': 42} njobs = {'n_jobs': 10} skf_cv = StratifiedKFold(n_splits = 10 #, shuffle = False, random_state= None) , shuffle = True,**rs) rskf_cv = RepeatedStratifiedKFold(n_splits = 10 , n_repeats=3 #, shuffle = False, random_state= None) #, shuffle = True ,**rs) #my_mcc = make_scorer({'mcc':make_scorer(matthews_corrcoef}) mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)} #%% homedir = os.path.expanduser("~") os.chdir(homedir + "/git/ML_AI_training/") # my function #from MultClassPipe import MultClassPipeline from MultClassPipe2 import MultClassPipeline2 from loopity_loop import MultClassPipeSKFLoop from MultClassPipe3 import MultClassPipeSKFCV gene = 'pncA' drug = 'pyrazinamide' #============== # directories #============== datadir = homedir + '/git/Data/' indir = datadir + drug + '/input/' outdir = datadir + drug + '/output/' #======= # input #======= infile_ml1 = outdir + gene.lower() + '_merged_df3.csv' #infile_ml2 = outdir + gene.lower() + '_merged_df2.csv' my_df = pd.read_csv(infile_ml1, index_col = 0) my_df.dtypes my_df_cols = my_df.columns geneL_basic = ['pnca'] # -- CHECK script -- imports.py #%% get cols mycols = my_df.columns mycols # change from numberic to num_type = ['int64', 'float64'] cat_type = ['object', 'bool'] # TODO: # Treat active site aa pos as category and not numerical: This needs to be part of merged_df3! #if my_df['active_aa_pos'].dtype in num_type: # my_df['active_aa_pos'] = my_df['active_aa_pos'].astype(object) # my_df['active_aa_pos'].dtype # -- CHECK script -- imports.py #%%============================================================================ #%% IMPUTE values for OR #%% Combine mmCSM_lig Data #%% Combine PROVEAN data #%% Combine ED logo data #%% Masking columns (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10 # get logic from upstream! my_df_ml = my_df.copy() my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts() my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts() my_df_ml.groupby(['mutationinformation'])['ligand_distance'].apply(lambda x: (x>10)).value_counts() my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0 (my_df_ml['ligand_affinity_change'] == 0).sum() #%%============================================================================ # Separate blind test set my_df_ml[drug].isna().sum() blind_test_df = my_df_ml[my_df_ml[drug].isna()] blind_test_df.shape training_df = my_df_ml[my_df_ml[drug].notna()] training_df.shape # Target1: dst training_df[drug].value_counts() training_df['dst_mode'].value_counts() #%% Build X common_cols_stabiltyN = ['ligand_distance' , 'ligand_affinity_change' , 'duet_stability_change' , 'ddg_foldx' , 'deepddg' , 'ddg_dynamut2'] foldX_cols = ['contacts' #, 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss' #, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss' #, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss' #, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss' #, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss' #, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss' ] X_strFN = ['rsa' #, 'asa' , 'kd_values' , 'rd_values'] X_evolFN = ['consurf_score' , 'snap2_score'] # quick inspection which lineage to use: #foo = my_df_ml[['lineage', 'lineage_count_all', 'lineage_count_unique']] X_genomicFN = ['maf' # , 'or_mychisq' # , 'or_logistic' # , 'or_fisher' # , 'pval_fisher' #, 'lineage' #, 'lineage_count_all' #, 'lineage_count_unique' ] #%% Construct numerical and categorical column names # numerical feature names numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN #categorical feature names categorical_FN = ['ss_class' , 'wt_prop_water' # , 'lineage_labels' # misleading if using merged_df3 , 'mut_prop_water' , 'wt_prop_polarity' , 'mut_prop_polarity' , 'wt_calcprop' , 'mut_calcprop' #, 'active_aa_pos' ] #%% extracting dfs based on numerical, categorical column names #---------------------------------- # WITHOUT the target var included #---------------------------------- num_df = training_df[numerical_FN] num_df.shape cat_df = training_df[categorical_FN] cat_df.shape all_df = training_df[numerical_FN + categorical_FN] all_df.shape #------------------------------ # WITH the target var included: #'wtgt': with target #------------------------------ # drug and dst_mode should be the same thing num_df_wtgt = training_df[numerical_FN + ['dst_mode']] num_df_wtgt.shape cat_df_wtgt = training_df[categorical_FN + ['dst_mode']] cat_df_wtgt.shape all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']] all_df_wtgt.shape #%%================================================================ #%% Apply ML #TODO: A #%% Data #X = all_df_wtgt[numerical_FN+categorical_FN] X = all_df_wtgt[numerical_FN] y = all_df_wtgt['dst_mode'] #Blind test data {same format} X_bts = blind_test_df[numerical_FN] y_bts = blind_test_df['dst_mode'] X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']] # Quick check (X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum() #%% MultClassPipeSKFCV: function call() # mm_skf_scoresD = MultClassPipeSKFCV(input_df = X # , target = y # , var_type = 'numerical' # , skf_cv = skf_cv) # mm_skf_scores_df_all = pd.DataFrame(mm_skf_scoresD) # mm_skf_scores_df_all # mm_skf_scores_df_test = mm_skf_scores_df_all.filter(like='test_', axis=0) # mm_skf_scores_df_train = mm_skf_scores_df_all.filter(like='train_', axis=0) # helps to see if you trust the results # print(mm_skf_scores_df_train) # print(mm_skf_scores_df_test)