#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Feb 21 13:06:25 2022 @author: tanu """ X_train scaler = preprocessing.MinMaxScaler() scaler.fit(X_train) x_train_scaled = scaler.transform(X_train) x_train_scaled foo = scaler.fit(X_train) x_train_scaled2 = foo.transform(X_train) x_train_scaled2 (x_train_scaled == x_train_scaled2).all() toy = pd.DataFrame({ 'numeric': [1., 2., 3., 4., 5.], 'category': ['a', 'a', 'b', 'c', 'b'] }) numeric_features = ['numeric'] categorical_features = ['category'] preprocessor = ColumnTransformer(transformers=[('num', StandardScaler(), numeric_features), ('cat', OneHotEncoder(), categorical_features) ]) preprocessor.fit(toy) bar = preprocessor.transform(toy) bar ############# toy2 = pd.DataFrame({ 'numeric': [1., 2., 3., 4., 5.], 'numeric2': [1., 2., 3., 4., 6.], 'category': ['a', 'a', 'b', 'c', 'b'], 'category2': ['b', 'a', 'b', 'e', 'f'] }) numeric_features = ['numeric', 'numeric2'] categorical_features = ['category', 'category2'] preprocessor = ColumnTransformer(transformers=[ ('num', StandardScaler(), numeric_features), ('cat', OneHotEncoder(), categorical_features) ]) preprocessor.fit(toy2) bar2 = preprocessor.transform(toy2) bar2 #### import pandas as pd from pandas import DataFrame import numpy as np from sklearn.decomposition import PCA from pandas import DataFrame pca = PCA(n_components = 2) pca.fit(toy2.iloc[:, 0:2]) columns = ['pca_%i' % i for i in range(2)] df_pca = DataFrame(pca.transform(toy2.iloc[:, 0:2]) , columns=columns , index=toy2.index) df_pca.head()