#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Mar 5 12:57:32 2022 @author: tanu """ #%% # data, etc for now comes from my_data6.py and/or my_data5.py #%% homedir = os.path.expanduser("~") os.chdir(homedir + "/git/ML_AI_training/") # my function from MultClassPipe2 import MultClassPipeline2 #%% try combinations #import sys, os #os.system("imports.py") def precision(y_true,y_pred): return precision_score(y_true,y_pred,pos_label = 1) def recall(y_true,y_pred): return recall_score(y_true, y_pred, pos_label = 1) def f1(y_true,y_pred): return f1_score(y_true, y_pred, pos_label = 1) #%% numerical_features_df.shape categorical_features_df.shape all_features_df.shape all_features_df.dtypes #%% target = target1 #target = target3 X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df, target, test_size = 0.33, random_state = 42) X_trainC, X_testC, y_trainC, y_testC = train_test_split(categorical_features_df, target, test_size = 0.33, random_state = 42) X_train, X_test, y_train, y_test = train_test_split(all_features_df, target, test_size = 0.33, random_state = 42) #%% #%% with feature selection # Determine categorical and numerical features input_df = numerical_features_df.copy() #input_df = categorical_features_df #input_df = all_features_df numerical_ix = all_features_df.select_dtypes(include=['int64', 'float64']).columns numerical_ix categorical_ix = all_features_df.select_dtypes(include=['object', 'bool']).columns categorical_ix # prepare data t = [('num', MinMaxScaler(), numerical_ix) , ('cat', OneHotEncoder(), categorical_ix)] col_transform = ColumnTransformer(transformers = t , remainder = 'passthrough') # model pipeline model = Pipeline(steps=[('prep', col_transform) , ('classifier', LogisticRegression())]) model.fit(X_train, y_train) y_pred = model.predict(X_test) y_pred selector_log = RFECV(estimator = model , cv = 10 , step = 1) selector_log_x = selector_log.fit_transform(X_train, y_train) print(selector_log_x.get_support()) X_trainN.columns print(selector_logistic_x.ranking_)