
Solutions 3
Jumping Rivers

Training Neural Networks

The fashion MNIST data is similar to the MNIST digits but instead
of images of digits it is made up of images of 10 fashion items. Oth-
erwise it’s format is similar. Each image consists of a 28 by 28 pixel,
single colour channel image. For the purposes of our example we will
treat each of the 784 pixels as independent inputs. There are 60,000
training images and 10,000 test images. The jrpytensorflow package
provides a function for downloading the data (the first time) and pre-
processing it into an appropriate numpy array structure as below

import jrpytensorflow

X_train,y_train,X_test,y_test,labels = jrpytensorflow.datasets.load_fashion_mnist()

For this example, to begin with, we will consider optimiser perfor-
mance. Since we want to get a feel for how the different optimisers
effect training we will focus on training loss.

• Create a model similar to that we used in the notes for the MNIST
digits example. (Hint: think about the shape of the data…)

from sklearn.preprocessing import LabelBinarizer
import tensorflow as tf

prep = LabelBinarizer()
y_train_bin = prep.fit_transform(y_train)
y_test_bin = prep.transform(y_test)

def myModel():
model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28,28)),
tf.keras.layers.Dense(20,

activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')

])

return model

model = myModel()
model.compile(optimizer='sgd',

loss = 'categorical_crossentropy',



solutions 3 2

metrics = ['accuracy'])
model.fit(X_train, y_train_bin, epochs = 50)

• Try different optimisers and varying the hyperparameters. How do
these affect the model fitting process? Remember to recreate your
model for each run as this stores the weights as internal state.

from tensorflow.keras.optimizers import SGD
model = myModel()
opt = SGD(lr=0.05)
model.compile(optimizer=opt,

loss = 'categorical_crossentropy',
metrics = ['accuracy'])

model.fit(X_train, y_train_bin, epochs = 25)

• Using TensorBoard can you visualise the architecture of the model
you have built and its training progress?

from tensorflow import keras
%load_ext tensorboard

tensorBoardCallback = keras.callbacks.TensorBoard(
log_dir = "logs/fit/",
histogram_freq = 1)

model = myModel()
model.compile(optimizer=opt,

loss = 'categorical_crossentropy',
metrics = ['accuracy'])

model.fit(X_train, y_train_bin, epochs=100,
validation_data=(X_test, y_test_bin),
callbacks = [tensorBoardCallback])


