#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 23 13:36:46 2022 @author: tanu """ #https://umap-learn.readthedocs.io/en/latest/auto_examples/plot_feature_extraction_classification.html from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from umap import UMAP # Make a toy dataset X, y = make_classification( n_samples=1000, n_features=300, n_informative=250, n_redundant=0, n_repeated=0, n_classes=2, random_state=1212, ) # Split the dataset into a training set and a test set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) # Classification with a linear SVM svc = LinearSVC(dual=False, random_state=123) params_grid = {"C": [10 ** k for k in range(-3, 4)]} clf = GridSearchCV(svc, params_grid) clf.fit(X_train, y_train) print( "Accuracy on the test set with raw data: {:.3f}".format(clf.score(X_test, y_test)) ) # Transformation with UMAP followed by classification with a linear SVM umap = UMAP(random_state=456) pipeline = Pipeline([("umap", umap), ("svc", svc)]) params_grid_pipeline = { "umap__n_neighbors": [5, 20], "umap__n_components": [15, 25, 50], "svc__C": [10 ** k for k in range(-3, 4)], } clf_pipeline = GridSearchCV(pipeline, params_grid_pipeline) clf_pipeline.fit(X_train, y_train) print( "Accuracy on the test set with UMAP transformation: {:.3f}".format( clf_pipeline.score(X_test, y_test) ) )