#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 15 11:09:50 2022 @author: tanu """ #%% Data X = all_df_wtgt[numerical_FN+categorical_FN] y = all_df_wtgt[drug] #y = all_df_wtgt['dst_mode'] #%% variables #%% MultClassPipeSKFCV: function call() mm_skf_scoresD = MultClassPipeSKFCV(input_df = X , target = y , var_type = 'mixed' , skf_cv = skf_cv) mm_skf_scores_df_all = pd.DataFrame(mm_skf_scoresD) mm_skf_scores_df_all mm_skf_scores_df_test = mm_skf_scores_df_all.filter(like='test_', axis=0) mm_skf_scores_df_train = mm_skf_scores_df_all.filter(like='train_', axis=0) # helps to see if you trust the results baseline_BT = mm_skf_scores_df_all.filter(like='bts_', axis=0) #%% mm_skf_scoresD2 = MultClassPipeSKFCV(input_df = X_sm , target = y_sm , var_type = 'mixed' , skf_cv = skf_cv) sm_all = pd.DataFrame(mm_skf_scoresD2) sm_df_CT = sm_all.filter(like='test_', axis=0) sm_df_BT = sm_all.filter(like='bts_', axis=0) #%% mm_skf_scoresD3 = MultClassPipeSKFCV(input_df = X_ros , target = y_ros , var_type = 'mixed' , skf_cv = rskf_cv , blind_test_input_df = X_bts , blind_test_target = y_bts) ros_all = pd.DataFrame(mm_skf_scoresD3) ros_CT = ros_all.filter(like='test_', axis=0) ros_BT = ros_all.filter(like='bts_', axis=0) #--------- combined mm_skf_scoresD3v2 = MultClassPipeSKFCV(input_df = X_rouC , target = y_rouC , var_type = 'mixed' , skf_cv = rskf_cv , blind_test_input_df = X_bts , blind_test_target = y_bts) rouC_all = pd.DataFrame(mm_skf_scoresD3v2) rouC_CT = ros_all.filter(like='test_', axis=0) rouC_BT = ros_all.filter(like='bts_', axis=0) #%% mm_skf_scoresD4 = MultClassPipeSKFCV(input_df = X_rus , target = y_rus , var_type = 'numerical' , skf_cv = rskf_cv , blind_test_input_df = X_bts , blind_test_target = y_bts) rus_all = pd.DataFrame(mm_skf_scoresD4) rus_CT = rus_all.filter(like='test_', axis=0) rus_BT = rus_all.filter(like='bts_' , axis=0) #%% mm_skf_scoresD5 = MultClassPipeSKFCV(input_df = X_enn , target = y_enn , var_type = 'numerical' , skf_cv = rskf_cv , blind_test_input_df = X_bts , blind_test_target = y_bts) enn_all = pd.DataFrame(mm_skf_scoresD5) enn_CT = enn_all.filter(like='test_', axis=0) enn_BT = enn_all.filter(like='bts_', axis=0) #%% mm_skf_scoresD6 = MultClassPipeSKFCV(input_df = X_renn , target = y_renn , var_type = 'numerical' , skf_cv = rskf_cv , blind_test_input_df = X_bts , blind_test_target = y_bts) renn_all = pd.DataFrame(mm_skf_scoresD6) renn_CT = renn_all.filter(like='test_', axis=0) renn_BT = renn_all.filter(like='bts_', axis=0) #%%: with categorical values + oversampling mm_skf_scoresD7 = MultClassPipeSKFCV(input_df = X_smnc , target = y_smnc , var_type = 'mixed' , skf_cv = rskf_cv , blind_test_input_df = X_bts , blind_test_target = y_bts) smnc_all = pd.DataFrame(mm_skf_scoresD7) smnc_CT = smnc_all.filter(like='test_', axis=0) smnc_BT = smnc_all.filter(like='bts_', axis=0)