
Practical 1
Jumping Rivers

We will build a linear regression model for predicting the fuel economy
of a vehicle given some other attributes on that vehicle. The data can
be access from the jrpyml package

import jrpyml

cars = jrpyml.datasets.cars.load_data()

• Begin by creating a scatter plot of fuel economy, (the ‘FE’ variable)
against engine displacement (‘EngDispl’)

• What would we expect a model between these two variables to tell
us?

• Fit a simple linear regression model with fuel economy as the re-
sponse variable and engine displacement as the input. sklearn
expects separate array objects for the predictors and the response
of a model. The following code should get you started with shaping
the inputs and outputs as necessary

X, y = cars.drop('FE', axis=1), cars['FE']

remember to reshape input to a 2d array
x_train = X['EngDispl'].values.reshape(-1, 1)
y_train = y

• What is the average decrease in fuel economy for each 1 litre in-
crease in displacement according to this model?

• Draw a scatter plot with the fitted model line

• Create a plot of model fitted values against residuals

• What does this plot tell us?

• Plot the fitted values against the true observations

• What does this plot tell us about the predictive performance of the
model across the range of the response?

• We will refit the model with a square term for the engine displace-
ment variable. A handy way to go from our original single predic-
tor to one that includes both a linear and a square term is to use
np.hstack() (horizontal stacking of arrays). Fit the same model
with the new input and look at the scatter plot with model line.

practical 1 2

import numpy as np
x_train = np.hstack([x_train, x_train*x_train])

• Now we wish to add the transmission (‘Tranmission’) variable to
our model. This variable is categorical so we will require some
preprocessing prior to fitting the model. The following will create
a column transformer which will standardise the numeric variables
and one hot encode the categorical variable

x_train = np.hstack([
X[['EngDispl']],
X[['EngDispl']]*X[['EngDispl']],
X[['Transmission']]

])
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder

preprocessor = ColumnTransformer([
('num', StandardScaler(), [0, 1]),
('cat', OneHotEncoder(), [2])

])

• Create a pipline that will run the preprocessor and fit a linear
regression model

• We can assess which model gave us the smallest overall mean
squared error using the mean_squared_error function from the
sklearn.metrics module.

from sklearn.metrics import mean_squared_error

• Which model gave better performance

