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Introduction

To begin, a couple of quotes from Wikipedia.

1.1 What is analytics?

Analytics is the discovery, interpretation, and communication of meaning-
ful patterns in data and applying those patterns towards effective decision
making.

1.2 What is machine learning?

Machine learning (ML) is the study of algorithms and statistical models that
computer systems use to progressively improve their performance on a spe-
cific task. Machine learning algorithms build a mathematical model of sam-
ple data, known as “training data”, in order to make predictions or decisions
without being explicitly programmed to perform the task. … In its application
across business problems, machine learning is also referred to as predictive
analytics.

Figure 1.1: https://xkcd.com/612/

The corresponding entry for predictive analytics includes
Predictive analytics encompasses a variety of statistical techniques from data
mining, predictive modelling, and machine learning, that analyse current
and historical facts to make predictions about future or otherwise unknown
events.

1.3 A statistical model

Suppose we observe some response, Y , that we are interested in together
with a set of p predictors,X = (X1, X2, . . . , Xp), and that we believe there
to be some relationship between Y andX . In general we could express this
as

Y = f(X) + ϵ

where f(·) is some fixed but unknown, essentially arbitrary, function of the
predictors X and ϵ is a random error independent of X . Here f(·) repre-
sents the systematic information about Y provided byX . We call this a sta-
tistical model as it describes the relationship between one or more random
variables, the quantities are not deterministically related.1 Knowledge of

1 i.e being taller doesn’t always mean you
have bigger feet.

the true f(·) is almost certainly unavailable but given a set of observations
we can estimate it. In analytics and machine learning we are describing the
process of estimating the function f(·) using a set of observed data.
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Simple Regression Techniques

2.1 Linear regression

Linear regression is a simple1 approach to statistical learning and a useful
1 and computationally fast, so it’s worth re-
membering.

tool for predicting a quantitative response. Though it is relatively simple
when compared to some of the more advanced techniques it is still a widely
used and useful technique.

It also provides an ample starting point to learning about analytics an
machine learning as many techniques can be considered as extensions to
linear regression. In addition we can start to build up our machine learning
workflow in a context where model complexity is not a burden.

Simple linear regression

Simple linear regression is the most straightforward approach for predict-
ing a quantitative response Y on the basis of a single predictor X . We
make the assumption that there is a linear relationship between Y and X ,
in particular we specify our model as having the form

Y = β0 + β1X

where β0 and β1 are the slope and y-intercept respectively.

Estimating the coefficients

In practice, β0 and β1 are unknown. To make predictions or inferences
from our model we first need to find the straight line that gets as close as
possible to all of the data points, i.e.. we need to find the best choice of β0

and β1 given a set of data.

2.2 Example: Boston housing data

Fitting a simple linear regressionmodel in Python is easy using the fantastic
sklearn package.2

2 sklearn contains implementations to a
whole host of model techniques together
with other tooling for a standard applied an-
alytics workflow.

Load the modules that we need to get started.
from sklearn.datasets import load_boston
from sklearn import linear_model
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The load_boston() function provides the covariates and response as sep-
arate attributes in the resultant object. So we can assign both the X, input
data, and y, response target, using3

3 There is more information about the study
and the variables in the boston object. Try
dir(boston) to see all the attributes.

boston = load_boston()
X, y = boston.data, boston.target

Visualising the data

Personally I find it easier to work with pandas DataFrames to visualise data
as we can make use of the excellent seaborn package and it’s convenient
syntax with DataFrame objects. We can turn our current X and y, which
are both numpy arrays into a single DataFrame, with
import pandas as pd
df = pd.DataFrame(X, columns = boston.feature_names)
df['MEDV'] = y

We can produce a simple scatter plot of the response MEDV against the first
predictor CRIM

import seaborn as sns
import matplotlib.pyplot as plt
sns.scatterplot(x = 'CRIM', y = 'MEDV', data = df)
plt.show()
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Figure 2.1: A simple scatter plot of MEDV
vs CRIM.

Model fitting

To fit a model using just a single predictor we first extract the training vari-
ables.

X_train = df['CRIM']
y_train = y

Unfortunately, sklearn’s various model fitting functions typically expect a
two dimensional array for the covariates. Since we have extracted only
a single feature here it is only one dimensional. We need to reshape the
X_train values to be the appropriate shape.4

4 This is not necessary if using more than a
single feature.if len(X_train.values.shape) == 1:

X_train = X_train.values.reshape(-1, 1)

Create a LinearRegression object.5
5 This object is of a broader class of estima-
tor objects.model = linear_model.LinearRegression()

We then pass the data to the model object’s .fit() method.

model.fit(X_train, y_train)

Wecanmake predictions fromour fittedmodelwith the .predict()method.
import numpy as np
new_value = np.array(1, ndmin = 2)
model.predict(new_value)
#> array([23.6179159])
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multiple_values = np.array([1, 2, 3], ndmin = 2).T
# here we use .T to make it a column vector
model.predict(multiple_values)
#> array([23.6179159 , 23.20272562, 22.78753534])

Fitted values

Fitted values of a model typically describes the predicted ŷ for the obser-
vations X . To get the model fitted values we could just predict from the
model using the values used to train it.

fitted = model.predict(X_train)

And then create a plot with the added fitted line.

ax = sns.scatterplot(x = 'CRIM', y = 'MEDV', data = df)
sns.lineplot(df['CRIM'], fitted, ax = ax)
plt.show()
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Figure 2.2: Scatter plot with fitted line

Interpreting the coefficients

The coefficients of the fitted model are kept in the model.coef_ attribute.
model.coef_
#> array([-0.41519028])

This gives us the expected change in y for a unit change in X .

2.3 Multiple linear regression

In practice we typically have more than a single predictor. The extension
to multiple linear regression is trivial. If we have p predictors, the model
has the following structure

Y = f(X) = β0 + β1x1 + . . .+ βpxp

That is we add a gradient coefficient for each of the predictors whose infor-
mation we want to include about Y . We will now use the first few variables
from Boston housing data. Again we should do some exploratory graphical
analysis of the features.

X_train = df.iloc[:,:3]
grid = sns.PairGrid(data=pd.concat([X_train,pd.Series(y_train,name="MEDV")],axis = 1))
grid.map_offdiag(sns.scatterplot)
grid.map_diag(sns.distplot)
plt.show()

If we are happy, we can proceed to fit the model in the same way.

model.fit(X_train, y_train)

And then make predictions
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Figure 2.3: Exploring relationships be-
tween predictors and outcome for the
boston housing data.

new_values = np.array(X_train.mean(), ndmin = 2)
model.predict(new_values)
#> array([22.53280632])

Residuals

Givenmodel predictions ŷi for each observationXi we can define a residual
as

ϵi = yi − ŷi

Residuals effectively show us what our model has failed to capture6. An-
6 In classical statistics, one of our assump-
tions it that the residuals are normally dis-
tributed.

other useful term here is

RSS =

n∑
i=1

ϵ2i

the sum of squared residuals. This gives us an overall score of how close to
the observations the model is getting.7

7 Small RSS implies the fitted model is
closer to the observations.Analysis of residuals can be informative of how we might improve our

model and for assessing whether any modelling assumptions have been
met. Using the observations, fitted values and residuals we could construct
a series of graphics analyses of the model.

fitted = model.predict(X_train)
resid = y_train - fitted
# Standardise to remove effect of measurement scale
resid = (resid - np.mean(resid))/np.std(resid,ddof = 1)
plt.figure()
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for i in range(3):
xvar = X_train.iloc[:,i]
ax = plt.subplot(3, 1, i + 1)
ax.scatter(xvar, resid)
ax.set_xlabel(boston.feature_names[i])
ax.set_ylabel("Residuals")
ax.hlines([-2, 0, 2], np.min(xvar), np.max(xvar))

plt.show()
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Figure 2.4: Residual analysis against the
predictors for the boston housing linear re-
gression model.

plt.figure()
ax = plt.subplot(3, 1, 1)
ax.scatter(fitted,resid)
ax.set_xlabel('Fitted values')
ax.set_ylabel('Residuals')

ax = plt.subplot(3,1,2)
ax.scatter(fitted,y_train)
ax.set_xlabel('Fitted values')
ax.set_ylabel('Predicted values')

ax = plt.subplot(3, 1,3)
import scipy.stats as stats
stats.probplot(resid,dist = 'norm',plot = ax)
plt.show()
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Figure 2.5: Examining fitted values and
residuals for the boston housing linear re-
gression model.

2.4 Scaling data

Many algorithms benefit from having standardised data.8

8 Not strictly necessary for linear regres-
sion, but for many techniques it is.

Why scaling matters

Scaling is crucial for many statistical and machine learning algorithms
• k-means and hierarchical clustering

– Data units & variance play crucial role in cluster selection
• Using gradient descent optimization

– Scaled data allows the weights to update at an equal speed
• Scaled data allows the regression coefficients to be compared
There are many common types of rescaling.

Min-max scaling

Min-max scaling is one of the simplest methods for rescaling data. It trans-
forms the data to fit on the range [0, 1]. Assume that the original data is x,
then the transformed data is defined

x′ =
x−min(x)

max(x)−min(x)

• Numerator: shifts the data (resulting in lower bound 0)
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• Denominator: squashes the data, resulting in an upper bound of 1

Min-max scaling: simulation study

We can examine some of the properties of the rescaling with a simulation
study. Suppose we have realisations of random variables drawn from 3
distributions:
• Normal: mean 2, variance 5
• t distribution, with 2 degrees of freedom
• Log normal(1, 1)
We could simulate this data from numpy

import numpy as np
import pandas as pd

np.random.seed(1)

x_n = np.random.normal(2, 5, 500)
x_t = np.random.standard_t(2, 500)
x_ln = np.random.lognormal(1, 1, 500)
df = pd.DataFrame({

'Normal': x_n,
'T': x_t,
'Lognormal': x_ln

})

And draw the histogram of each variable
import seaborn as sns
import matplotlib.pyplot as plt
df_long = df.melt(var_name='Distribution')
g = sns.FacetGrid(df_long, col='Distribution',sharex=False)
g.map(plt.hist, 'value', bins = 50)
#> <seaborn.axisgrid.FacetGrid object at 0x7fb5992344a8>
plt.show()
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Applying the transformation to each variable and redrawing the histogram

def min_max(x):
min = np.min(x)
return (x - min)/(np.max(x) - min)

scaled = df.apply(min_max).melt(
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var_name='Distribution'
)
scaled['Scaled'] = True
df_long['Scaled'] = False
full_data = pd.concat([

df_long, scaled
], axis=0)

g = sns.FacetGrid(
full_data, col='Distribution',
row='Scaled', sharex=False,
sharey=False

)
g.map(plt.hist, 'value', bins = 50)
#> <seaborn.axisgrid.FacetGrid object at 0x7fb56da79080>
plt.show()
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we can see that min-max scaling doesn’t change the profile of the data, only
the bounds. The distributional shape remains. However it does change the
means and standard deviations.

df.apply([np.mean,np.std])
#> Normal T Lognormal
#> mean 2.267184 0.105937 4.837398
#> std 4.946991 2.409213 6.243908
df.apply(min_max).apply([np.mean,np.std])
#> Normal T Lognormal
#> mean 0.488762 0.265530 0.056180
#> std 0.169885 0.061178 0.074298

This sort of rescaling is not often used in linear regression problems but
is useful in techniques which rely on gradient descent based optimisation
routines.
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Min max scaling in sklearn

sklearn comeswithmany preprocessing transformations in the sklearn.preprocessing
module. To apply themin-max standardisationwe can use MinMaxScaler().
from sklearn import preprocessing
scaler = preprocessing.MinMaxScaler()
scaler.fit(X_train)

We can then create a scaled training set

X_train_scaled = scaler.transform(X_train)
X_train_scaled[:1]
#> array([[0. , 0.18 , 0.06781525]])

Z-score standardisation

A common form of standardisation is to rescale each independent variable
such that it has zero mean and unit variance.
Given original data x we can define the transfored data

x′ =
x− x̄

s

where x̄ is the sample mean and s is the sample standard deviation
• Numerator: shifts the data (resulting in mean 0)
• Denominator: squashes the data, resulting in a variance of 1

Z-score standardisation: simulation study

Replicating the same simulation study as before

def z_score(x):
mean = np.mean(x)
std = np.std(x, ddof=1)
return (x - mean)/std

scaled = df.apply(z_score).melt(var_name='Distribution')
scaled['Scaled'] = True
full_data = pd.concat([df_long, scaled], axis=0)
g = sns.FacetGrid(

full_data, col='Distribution',
row='Scaled', sharex=False,
sharey=False

)
g.map(plt.hist, 'value', bins=50)
#> <seaborn.axisgrid.FacetGrid object at 0x7fb5614d9d30>
plt.show()
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we can again see that the profile of the data is unchanged. This sort of
scaling is popular in linear models. This won’t affect the prediction but
makes the size of the coefficients directly comparable.

Z-score standardisation in sklearn

The sklearn.preprocessing module has a StandardScaler() which
can be used to employ this type of zero mean unit variance scaling.

Dividing by two standard deviations

One of the downsides of scaling data by z-scoring is that is not obvious
how this should be handled in the case of categorical variables. A paper by
Andrew Gelman9 suggest the use of a rescaling that divides numeric vari-

9 http://www.stat.columbia.edu/
~gelman/research/published/
standardizing7.pdf.

ables by two standard deviations, whilst leaving binary encoded categorical
variables untransformed.
The motivation is that this allows the size of coefficients to be directly
comparable between numeric and binary variables. The main emphasis of
this sort of rescaling is in interpretation of regression models, although it
doesn’t appear to be particularly widely used.

Two standard deviation scaler in sklearn

There is no dedicated function for this sort of scaling in sklearn. However
we can define one which can be used in the same way as the others. The
way in which we do this is to define a class which inherits from the estima-
tor and transformer classes which define the structure of all of the various
estimators and transformers in the package. Doing this we only have to
define a fit and a transform method which define the rescaler.
from sklearn.base import BaseEstimator, TransformerMixin

class two_sd_scaler(BaseEstimator, TransformerMixin):

def fit(self, X, y=None):

http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf
http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf
http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf
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self.stds = 2*np.std(X, axis=0, ddof=1)
return self

def transform(self, X, y=None):
return X/self.stds

Fitting a model with scaled data

Having preprocessed the data this way we can not fit a model to it in the
same way as before.

model2 = linear_model.LinearRegression()
model2.fit(X_train_scaled, y_train)

When making predictions on new values we also need to make sure to pass
the new values through the same preprocessing step.

new_value = np.array(X_train.mean(), ndmin = 2)
new_scaled = scaler.transform(new_value)
pred = model2.predict(new_scaled)
pred
#> array([22.53280632])

2.5 Creating a pipeline

For any training data set and any data for prediction we will want to apply
the same scaling transformation and use the same model. We could create
a sklearn.pipeline.Pipeline() to organise the steps to creating the
estimator.10

10 There is a shorthand
sklearn.pipeline.make_pipeline
which does not allow naming of steps,
but is useful in iterating through multiple
estimators.

from sklearn.pipeline import Pipeline
model = Pipeline(

steps = [
('preprocess', preprocessing.StandardScaler()),
('regression', linear_model.LinearRegression())

]
)

Having created the Pipeline object we can now fit as before. Calling
.fit() now however, will first fit the 'preprocess' step and then the
'regression' step. Whenwe predict, the new valueswill also pass through
both stages of our pipeline.

model.fit(X_train,y_train)
new_values = np.array(X_train.mean(), ndmin = 2)
model.predict(new_values)

2.6 Preprocessing categorical variables

With numeric variables, the StandardScaler() is often appropriate as it
gives everything the same mean and variance. However this transforma-
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tion is not applicable for categorical variables. Instead we typically want to
convert our categorical column into a set of binary dummy variables which
inform inclusion in a given category.11

11 We may also want an ordinal transforma-
tion when the categorical variables take on
a natural order, say small, medium, large.One hot encoding

One hot encoding will take a categorical feature with K categories and
create a ‘one of K’ encoding scheme. I.e a set of binary variables for each
category. Consider the toy data

toy = pd.DataFrame({
'category':['a', 'a', 'b', 'c', 'b']

})

Wecan implement a one hot encoding scheme using the sklearn.preprocessing.OneHotEncoder.

enc = preprocessing.OneHotEncoder()
enc.fit(toy)

With the fitted transformer we can apply the transformation to data

enc.transform(toy).toarray()
#> array([[1., 0., 0.],
#> [1., 0., 0.],
#> [0., 1., 0.],
#> [0., 0., 1.],
#> [0., 1., 0.]])

Combining preprocessing steps

We could combine both of the preprocessing steps into a single operation
for our Pipeline using a sklearn.compose.ColumnTransformer

toy = pd.DataFrame({
'numeric': [1., 2., 3., 4., 5.],
'category': ['a', 'a', 'b', 'c', 'b']

})

from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder

numeric_features = ['numeric']
categorical_features = ['category']

preprocessor = ColumnTransformer(
transformers=[

('num', StandardScaler(), numeric_features),
('cat', OneHotEncoder(), categorical_features)

]
)

preprocessor.fit(toy)

Applying the transformer will now give the appropriate pre-processing for
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the different types of variables.

preprocessor.transform(toy)
#> array([[-1.41421356, 1. , 0. , 0. ],
#> [-0.70710678, 1. , 0. , 0. ],
#> [ 0. , 0. , 1. , 0. ],
#> [ 0.70710678, 0. , 0. , 1. ],
#> [ 1.41421356, 0. , 1. , 0. ]])

This preprocessing step could then be a step in the pipeline for a regres-
sion12.

12 Pipeline steps can also be pipelines as
both single estimators and pipelines are
subclasses of general estimator classes. Us-
ing this we can build quite complex mod-
elling workflows.

model = Pipeline(
steps = [

('preprocess', preprocessor),
('regression', linear_model.LinearRegression())

]
)
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Model Assessment and Feature Selection

So far our assessment of a fitted model has been based on comparing it
to the data that was used to train the model. Whilst this does have some
utility it typically does a poor job at informing us as to how well our model
generalises to data it hasn’t seen before.

3.1 Resampling techniques

Resampling methods involve repeatedly drawing a sample from a set of
training data, fitting a model to each sample and using it to obtain addi-
tional information. For example we could learn about the variability of es-
timated model coefficients or errors. Does this procedure yield consistent
inferences?

3.2 Cross validation

Cross validation can be an invaluable tool in assessing the predictive abil-
ity of a model, selecting an appropriate level of flexibility or tuning hyper-
parameters. In cross validation we typically divide our training data into k

approximately equally sized groups. Each group in turn is left out as a test
set, with the other k−1 groups being used as a training set. In model train-
ing we could use this to calculate performance metrics for our model, per-
haps mean squared error (MSE) in a regression context, or accuracy in clas-
sification for each of the held out groups in turn. Since the held out groups
are not used for training, we are gaining insight into how the model gen-
eralises. The sklearn.metricsmodule provides a number of scoring functions
for differentmodel tasks and sklearn.model_selection.cross_validate
can be used to run a cross validation procedure. We begin by loading some
standard libraries
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
import pandas as pd

and importing the necessary data set

boston = load_boston()
X_train, y_train = pd.DataFrame(boston.data, columns = boston.feature_names), boston.target
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New we set up a modelling Pipeline for the Boston data

model = Pipeline(
steps = [

('pre', StandardScaler()),
('reg', LinearRegression())

]
)

To use the metric scoring functions together with cross_validate() we
need to wrap them using the make_scorer() function.
from sklearn.metrics import mean_squared_error, make_scorer
from sklearn.model_selection import cross_validate
score_fn = make_scorer(mean_squared_error)
scores = cross_validate(model, X_train, y_train,

scoring = score_fn,
cv = 10)

The generated output is a dictionary of timing information for the repeated
model fitting processes and the evaluated metric scores on each of the held
out cross validation folds. We choose 10 cross validation folds here, mean-
ing that we have 10 hold out estimates of the performance metric.1

1 Research has shown that 10 folds is almost
always a good choice.We could use the cross validation estimates of the performance metrics

as a means for comparing different model specifications competency at the
same problem. For example it might not be the case that using all 13 pre-
dictors for the boston housing data is the best linear regression model that
we can find. In the code below we define a train function which wraps up
the call to cross_validate(). Doing this means we can very quickly re-
run the whole preprocess, model fit and cross validation pipeline for linear
models with different predictors as inputs.
from itertools import combinations
def train(X):
return cross_validate(model, X, y_train, \

scoring = score_fn, \
cv = 10, \
return_estimator = True)['test_score']

scores = [train(X_train.loc[:,vars]) for vars in combinations(X_train.columns,12)]
means = [score.mean() for score in scores]

In this instance 7 of the 13 possible 12 predictor models give better perfor-
mance as measure by mean squared error than our full 13 predictor model.

Multiple performance metrics

If we want to measure the performance of our model using multiple met-
rics, the cross_validate() function allows us to pass a dictionary of scor-
ing functions to be applied to the estimator object for each of the hold
out sets. This includes the ability to use our own performance metrics.
The make_scorer() utility function expects a function as an argument
with signature (y_true, y_pred)2 Below we define a performance met-

2 Note the names don’t matter, but the first
argument is the “ground truth” and the sec-
ond the model prediction.

ric which gives us the largest absolute error in prediction, mae_fn(), wrap
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it as a scorer using make_scorer() and pass it to the cross_validate()
function.
import numpy as np
mse = make_scorer(mean_squared_error)
def mae_fn(y_true,y_pred):
return np.max(np.abs(y_pred - y_true))

mae = make_scorer(mae_fn)
scores = cross_validate(model, X_train, y_train, scoring = {

'mse' : mse,
'mae' : mae

}, cv = 10, return_estimator = True)
scores['test_mse'].mean()
#> 34.705255944524836
scores['test_mae'].mean()
#> 14.244172847564489

3.3 Penalised regression

Generalised linear model parameters, of which linear regression is an ex-
ample, are typically calculated via maximisation of the model likelihood
function. Whilst maximum likelihood estimation has many wonderful sta-
tistical properties it can occasionally be unsatisfactory in a regression set-
ting.
• Large variability - if there are a large number of predictors3, or predic-

3 X variables.tors are highly correlated (not independent) we can get large variance
of estimated model parameters. This in turn gives large variance in pre-
dictions and suboptimal predictive performance.

• Difficult interpretation - if model interpretation is important we often
want a small number of “important” predictors to gain insight into the
most relevant relationships between X and y.

• Large model parameters (effect sizes) often also have large variances.
One solution to this is to choose a subset of explanatory variables. It is often
infeasible to check all possible model configurations (all possible variable
subsets) using cross validation.4

4 In the Boston housing example, using
only the 13 available features, without con-
sidering transformations or additional en-
gineered features we would need to fit
8190 × 10 linear regression models to get
all the cross validation estimates.

Even when it is feasible, this solution would not address the issue of high
variance, or correlated predictors. We would still remain with large effect
sizes that require shrinkage.

The idea behind penalised regression techniques is to address the issue
by introducing a penalty to large estimates of coefficients. The success of
such techniques is founded in the bias-variance trade-off. By introducing a
penalty we also introduce a bias into the estimator for coefficients.5 How-

5 Bias here meaning that the expectation of
the estimated value is different from the un-
known true value.

ever by penalising the large coefficients we are aiming to reduce variance.
Since total error is a function of both bias and variance we hope that the
induced error from the bias is smaller than the reduction achieved in vari-
ance. When this is the case the resultant predictive power of our model will
have better predictive power due to smaller total error.
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Instead of maximising a likelihood function directly (equivalently min-
imising the negative log likelihood) we typically minimise a function of the
form

M(θ) =
Loss function
L(θ |X) +

Penalty term
λP (θ)

• The loss function L(θ |X) is typically proportional to the negative log
likelihood (e.g RSS in linear regression) and controls movement of the
model towards the data points

• P (θ) penalises “less realistic” parameter values
• λ controls the trade-off between the two

λ - the regularization parameter

We have introduced an additional hyper-parameter into our model estima-
tion process. Clearly choice of λ is important since it controls the trade-off
between model fit and penalty.
• If λ = 0, the loss function dictates the model fit and we get standard

linear regression (zero bias but potentially large variance).
• If λ = ∞, the penalty effectively forces all coefficients to be zero and we

get a null model (zero variance, but very high bias).
• λ effectively controls the bias variance trade-off. Ideally, a good choice

of λ will introduce a small bias for a large reduction in variance.

LASSO (Least Absolute Shrinkage and Selection Operator)

Lasso regression is an example of such a technique. It follows the above
prescription with a penalty function defined as

P (β) =

n∑
i=1

|βi |.

That is, the sum of the absolute values of the coefficients. This has the con-
sequence of penalising regression coefficients that are further away from 0,
favouring smaller values of βi, (shrinkage), reducing the variance. When
βi is sufficiently penalised it is set to 0, effectively removing it from the
model fit (selection).

We can use cross validation as a means for selecting the value of our
hyper-parameter λ. sklearn implements a LassoCV estimator which will
automatically take care of trialling different values of λ and finding the
best one using cross validation in an efficient manner. As with all other
model estimators, we could build a pipeline for training our model. It is
important to note that rescaling is now very important. Since β is a function
of measurement scale and dictates the contribution to the penalty, we want
to standardise predictors such that they are on a common measurement
scale. For example by using the StandardScaler() to give all predictors
0 mean unit variance.
from sklearn.linear_model import LassoCV
model = Pipeline([

('pre', StandardScaler()),
('mod', LassoCV(cv = 10))
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])
model.fit(X_train,y_train)

From our fitted model we can extract the coefficients estimated from the
final step in our pipeline

model.steps[-1][1].coef_
#> array([-0.49642878, 0.53758696, -0.05979688, 0.64601683, -1.35784426,
#> 2.89535011, -0. , -2.10431451, 0.52531783, -0.28422681,
#> -1.86040633, 0.72184225, -3.72077045])

We can see that some coefficients have been set to be 0.

3.4 Other penalised regression techniques

Method λ1 λ2

Linear 0 0

Ridge 0 ̸= 0

Lasso ̸= 0 0
Elastic ̸= 0 ̸= 0

Table 3.1: A summary of what type of
model is fit given penalty parameters using
a penalized regression model.

There are other popular techniques which operate in a similar way but vary
by choice of the penalty function. In particular
• Ridge regression - see sklearn.linear_model.RidgeCV, which has penalty

based on squared coefficients, P (β) =
∑

i β
2
i . This penalty function acts

as a more aggressive shrinkage operation (hence often greater variance
reduction) but has the consequence that βi ̸= 0∀i, i.e no subset selection.

• Elastic net - see sklearn.linear_model.ElasticNetCV, which mixes both
lasso and ridge penalties, P (β) = λ1

∑
i |βi |+λ2

∑
i β

2
i which aims to

get the best of both.
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Classification

In many situations the response is qualitative rather than quantitative. In
this chapter we will consider some techniques for predicting categorical1

1 Often qualitative variables are referred to
as categorical.

variables, a process known as classification. Predicting a categorical re-
sponse typically involves assigning the observation to a category, classify-
ing that observation.

4.1 Logistic regression

Consider the breast cancer data from the sklearn package. The data relates
30 predictor variables to the diagnosis of whether or not a tumor was ma-
lignant or benign, recorded as 0 and 1 respectively. To begin we will load
everything we need to build a model Pipeline for this task.
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
cancer = load_breast_cancer()
X_train, y_train = cancer.data, cancer.target
cancer.target_names
#> array(['malignant', 'benign'], dtype='<U9')

With logistic regression we are fitting a model of the form

log
(

π(X)

1− π(X)
= β0 + βX

)

where π(X) is the probability Pr(Y = 1 |X). The left hand side of this
equation is called the log-odds.

As with the other modelling techniques that we have come across so far
we can add the steps to a Pipeline and preprocess and fit in one go.

model = Pipeline([
('pre', StandardScaler()),
('logis', LogisticRegression(class_weight = 'balanced'))

])
model.fit(X_train, y_train)
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4.2 Quantifying error

The performance metrics that we used for regression problems, such as
mean square error, are no longer appropriate since we don’t observe the
true probability of belonging to a certain category. Instead we might exam-
ine, among other things,
• Accuracy - The proportion of correct classifications made by the model.
• Precision -The proportion of correct positive classifications of those pre-

dicted as positive. (Typically this makes most sense when one of the
classes is an event of interest.)

• Recall - The proportion of correct positive classifications of those that
were truly positive in the reference data.2

2 Recall is often called sensitivity, true posi-
tive rate or probability of event detection.The sklearn.metrics module has a number of functions for quantifying the

efficacy of a classification model
from sklearn.metrics import accuracy_score, precision_score, recall_score
y_pred = model.predict(X_train)
accuracy_score(y_train,y_pred)
#> 0.984182776801406
precision_score(y_train,y_pred,pos_label=0) # tp/(tp + fp)
#> 0.981042654028436
recall_score(y_train,y_pred,pos_label=0) # tp/(tp + fn)
#> 0.9764150943396226

As with our regression examples, typically we are not interested in how
the performance metrics measure the ability of the model to classify the
training data. Instead we want to know how well it generalises. We could
use cross validation to repeatedly separate the available data into training
and validation sets to get a better picture.
from sklearn.model_selection import cross_validate
from sklearn.metrics import make_scorer
import pandas as pd

acc = make_scorer(accuracy_score)

def precision(y_true,y_pred):
return precision_score(y_true,y_pred,pos_label = 0)

def recall(y_true,y_pred):
return recall_score(y_true, y_pred, pos_label = 0)

prec = make_scorer(precision)
rec = make_scorer(recall)
output = cross_validate(model,X_train,y_train,scoring={

'acc' : acc,
'prec' : prec,
'rec' : rec

}, cv = 10, return_train_score=False)
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pd.DataFrame(output).mean()
#> fit_time 0.028558
#> score_time 0.003257
#> test_acc 0.970113
#> test_prec 0.954378
#> test_rec 0.966883
#> dtype: float64

From this we can ascertain that the model is doing relatively well at classi-
fying the tumors.

4.3 Linear Discriminant Analysis (LDA)

Logistic regression directly models Pr(Y = k |X = x) using the logis-
tic function but is typically used when there are only two categories in
response. LDA classifies an observation into one of K classes K ≥ 2

RememberX is the random variable, x is a
observed value of that random variable.

Pr(Y = k |X = x) =
πkfk(x)∑K
l=1 πlfl(x)

(4.1)

where
• πk is the prior probability that an observation comes from class k;
• fk(X) = Pr(X = x |Y = k), the density function ofX for an observa-

tion from class k.
The goal is to find estimates of πk and fk(X) from the training data to plug
into equation (4.1) to classify a future observation.

fk(X) is assumed to have a Gaussian distribution3. That is we are as-
3 The Gaussian distribution is also known
as the Normal distribution.

suming that the distribution of each of the predictors for observations in
a given class are approximately normal with mean µk and variance σ2

k . In
particular LDA makes the assumption that there is common variance for a
predictor across all classes

σ1 = . . . = σk. (4.2)

We classify a response for an observation X to the group k which max-
imises ((4.1)).

For multiple predictors we instead make the assumption that within each
response group the predictors come from amultivariate Gaussianwithmean
vector µk and common covariance matrix Σ.

LDA takes a set of p predictors and reduces them to dimension k−1 (the
number of response categories) via a set of k discriminant function which
are linear in x4.

4 Hence the name.Wecan fit amodel using LDAfit in Python using sklearn.discriminant.LinearDiscriminantAnalysis.
Performing LDA on the diabetes data set.
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

model = Pipeline([
('pre', StandardScaler()),
('lda', LinearDiscriminantAnalysis())
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])
model.fit(X_train, y_train)
#> Pipeline(memory=None,
#> steps=[('pre',
#> StandardScaler(copy=True, with_mean=True, with_std=True)),
#> ('lda',
#> LinearDiscriminantAnalysis(n_components=None, priors=None,
#> shrinkage=None, solver='svd',
#> store_covariance=False,
#> tol=0.0001))],
#> verbose=False)
model.named_steps['lda'].priors_
#> array([0.37258348, 0.62741652])
model.named_steps['lda'].means_
#> array([[ 0.94734027, 0.53877588, 0.96370009, 0.92003111, 0.46529456,
#> 0.77410727, 0.90364908, 1.00779292, 0.42887995, -0.01665905,
#> 0.73595579, -0.01077503, 0.72169029, 0.71143247, -0.08696505,
#> 0.380218 , 0.32925896, 0.52950663, -0.00846312, 0.10118291,
#> 1.00758521, 0.5929117 , 1.01596866, 0.95226693, 0.54692472,
#> 0.76692406, 0.85596015, 1.02979135, 0.54021502, 0.42028107],
#> [-0.56256621, -0.31994534, -0.57228129, -0.54634901, -0.27630937,
#> -0.45969395, -0.53662074, -0.59846526, -0.25468501, 0.00989277,
#> -0.43703817, 0.00639862, -0.42856678, -0.4224753 , 0.05164311,
#> -0.22578772, -0.19552633, -0.31444091, 0.00502572, -0.06008621,
#> -0.59834192, -0.35209322, -0.60332033, -0.56549185, -0.32478442,
#> -0.45542829, -0.50830127, -0.61152876, -0.32079995, -0.24957868]])
model.named_steps['lda'].coef_
#> array([[ 1.44833568e+01, -3.68957962e-01, -1.08865782e+01,
#> -2.11087855e+00, -2.24784150e-02, 4.20809820e+00,
#> -2.10328313e+00, -1.56846323e+00, -5.31387551e-02,
#> -4.43195602e-03, -2.27635626e+00, 7.03616573e-02,
#> 8.59307158e-01, 7.92601536e-01, -8.98376566e-01,
#> -2.19353267e-02, 2.03117873e+00, -1.23061216e+00,
#> -2.64794590e-01, 3.56875236e-01, -1.78035220e+01,
#> -8.30445328e-01, 1.54420617e+00, 1.08656797e+01,
#> -2.33917449e-01, -1.99413370e-01, -1.50083483e+00,
#> -5.75986366e-01, -6.50095283e-01, -1.46687628e+00]])

• Prior probabilities - if no other information is given they are estimated
to be the proportion of each response in the training data.5

5 Prior represent the initial belief we have
before fitting the model.

• Group means - the means of each covariate within the response groups.
• Coefficients of linear discriminants - the linear combination of covariates

used to form the LDA decision rule.

output = cross_validate(model,X_train,y_train,scoring={
'acc' : acc,
'prec' : prec,
'rec' : rec

}, cv = 10, return_train_score=False)
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pd.DataFrame(output).mean()
#> fit_time 0.008946
#> score_time 0.003537
#> test_acc 0.956046
#> test_prec 0.990238
#> test_rec 0.891775
#> dtype: float64

Quadratic Discriminant Analysis (QDA)

QDA is a more flexible version of LDA where the assumption of shared
variance is relaxed. That is the Gaussian distribution of predictors within
each group has its own covariance matrix Σk .6

6 QDA gets its name from the fact that the
discriminant function is now quadratic in x.
This allows decision boundaries to become
quadratic in predictor space as opposed to
the linear boundaries imposed in LDA. See
figure 4.1.

The sklearn.discriminant_analysis.QuadraticDisciminantAnalysis
class is used in the same way
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

model = Pipeline([
('pre', StandardScaler()),
('qda', QuadraticDiscriminantAnalysis())

])
model.fit(X_train, y_train)
#> Pipeline(memory=None,
#> steps=[('pre',
#> StandardScaler(copy=True, with_mean=True, with_std=True)),
#> ('qda',
#> QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0,
#> store_covariance=False,
#> tol=0.0001))],
#> verbose=False)

See figure 4.1 for a comparison of how the model affects the decision bound-
ary for a number of classification models on a simulated data set.

Difference between LDA and QDA

Figure 4.1: Differences between LDA (top)
and QDA (bottom). LDA assumes the stan-
dard deviation between groups is the same.

• LDA is a much less flexible classifier due to common variance assump-
tion.

• For k categories with p predictors LDA has to estimate kp linear coeffi-
cients. In QDA estimating the covariance matrices require kp(p− 1)/2.
This quickly adds up to a lot of parameters.

• LDA classifier has substantially lower variance so can give better predic-
tion performance.

• If the common variance assumption is poor it can result in high bias.
• LDA tends to be better for smaller training data.
• QDA better when constant variance assumption clearly untenable.
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4.4 K-nearest neighbours (KNN)

Theoretically a KNN classifier is a simple concept. Given a test observation,
x0, we identify theK points in the training data that are closes to x0, denote
this set of points asN0. We then estimate the probability that the response
belongs to group j

Pr(Y = j |X = x0) =
1

K

∑
i∈N0

I(yi = j)

That is we estimate the probability of being in group j based on the pro-
portion of the K nearest neighbours that belong to that group and classify
according to whichever class has the highest probability. All that remains
is to choose the number of neighbours K .
• A small K gives a very flexible decision boundary leading to low bias

but high variance and the potential to overfit.
• A largeK makes the decision boundary more linear, increasing the bias

for a reduction in variance with the potential to underfit.

from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_wine

wine = load_wine()
X_train, y_train = wine.data, wine.target

model = Pipeline([
('pre', StandardScaler()),
('knn', KNeighborsClassifier())

])

model.fit(X_train,y_train)

Tuning the hyperparameter K

We want to find the value ofK which yields the best performance. We can
quickly scan a range of parameter values in our model Pipeline using grid
search cross validation, GridSearchCV.
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix
clf = GridSearchCV(model, param_grid= {

'knn__n_neighbors' : [1,3,5,10,15,20,25,30,35,40]
}, cv = 10, iid = False, return_train_score=False)
clf.fit(X_train,y_train)

Thebest chosen parameters for the scoring function are stored in the .best_params_
attribute. Note that we could specify the specific scoring function to use,
but here we stick with the default accuracy measure.
clf.best_params_
#> {'knn__n_neighbors': 35}
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clf.best_score_
#> 0.9777777777777779
pd.DataFrame(clf.cv_results_)[['params','mean_test_score','rank_test_score']]
#> params mean_test_score rank_test_score
#> 0 {'knn__n_neighbors': 1} 0.943464 10
#> 1 {'knn__n_neighbors': 3} 0.949020 9
#> 2 {'knn__n_neighbors': 5} 0.966013 7
#> 3 {'knn__n_neighbors': 10} 0.971895 2
#> 4 {'knn__n_neighbors': 15} 0.966340 5
#> 5 {'knn__n_neighbors': 20} 0.966667 4
#> 6 {'knn__n_neighbors': 25} 0.966340 5
#> 7 {'knn__n_neighbors': 30} 0.966013 7
#> 8 {'knn__n_neighbors': 35} 0.977778 1
#> 9 {'knn__n_neighbors': 40} 0.971895 2

A confusion matrix is a handy way to quickly see how well the model is
doing at classifying each individual class.

confusion_matrix(y_train,clf.predict(X_train))
#> array([[59, 0, 0],
#> [ 2, 67, 2],
#> [ 0, 0, 48]])

Note that whilst we have introduced K nearest neighbours in the context
of classification problems, it also has utility in regression problems where
prediction is typically taken to be the average of theK surrounding points.
See sklearn.neighbors.KNearestRegressor.

4.5 Decision trees

Decision trees are a non-parametric approach to supervised learning used
for both classification and regression. It aims to learn simple decision rules
inferred from the data. One of the advantages of this rule based approach
is that it yields a model which is simple to understand and interpret, in-
cluding for non statisticians. In addition they typically require little data
preparation, i.e scaling predictors is not necessary.

Intuition

Decision trees are found by recursively partitioning data. The idea is I
search amongst all the variables to find the point which best splits the data
into two parts. In each of these two parts I then do the same again, contin-
uing until I hit some stopping criteria.
In a classification problem the way in which we decide on “best split” is typ-
ically based on the homogeneity of data in the nodes. For example imagine
there are two variables, age and income, which are being used to try to pre-
dict whether a customer makes a purchase. If the available training data
showed that 95% of people over 30 made the purchage, the split would be
made here and age becomes the top node in my decision tree. You could
describe the subset of people over 30 as 95% pure (95% of people have the
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same outcome). There are many common ways to measure impurity across
the tree, such as Gini for quantifying homogeneity in the nodes. We are
essentially trying to minimise impurity with each partition.
In theory we could recursively partition the data until each observation
is alone in a node, but this would be a terrible case of over fitting so we
often prune the tree by employing some penalty on complexity or having
a terminating condition based on the maximum allowed depth of the tree.
import sklearn.tree as tree
from sklearn.metrics import confusion_matrix
model = tree.DecisionTreeClassifier()
model.fit(X_train,y_train)

After fitting amodel we can examine diagnostics such as a confusionmatrix
and cross validation estimates of performance metrics for comparison to
other models that we fit.

confusion_matrix(y_train, model.predict(X_train))
#> array([[59, 0, 0],
#> [ 0, 71, 0],
#> [ 0, 0, 48]])

from sklearn.model_selection import cross_validate
val = cross_validate(model,X_train,y_train, cv = 10)
val['test_score'].mean()
#> 0.8647058823529411

The graphviz package can be useful for visualising single tree models.
import graphviz
dot_data = tree.export_graphviz(model,out_file = None,

feature_names=wine.feature_names,
class_names=wine.target_names,special_characters=True)

graph = graphviz.Source(dot_data)
graph.render(filename='tree',format='png')

Figure 4.2: Visualisation of a decision tree
model.



5

More Advanced

5.1 Random forest

Figure 5.1: https://xkcd.com/1838/

Single decision trees, whilst simple and intuitive, often perform poorly for
predictive models. Either due to complex trees with high variance and over
fitting, or trees which are too simple which gives high bias but under fit the
data.

Random forest models are an ensemble learning method applicable for
both regression and classification tasks. They offer an improvement over
single trees by growing many trees on bootstrap1 samples of the data and

1 Bootstrap samples are samples from the
original data of the same dimension, sam-
pled with replacement.

aggregating prediction over all trees. In addition each split in the tree grow-
ing process considers only a random subset of predictor variables. This
often provides strong performance as aggregating over complex trees has
the effect of reducing the variance, whilst a random subset of predictors
at each split de-correlates trees, further reducing variance in the aggregate.
Random forests are fairly robust to over fitting, so in practice we typically
keep adding trees until our estimated performance metrics settle down.

Below we load everything that we need for training and testing a
RandomForestClassifier2

2 See also RandomForestRegressor.
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix

For this example we will use a random forest to classify images of hand
written digits given the grey scale colour intensities of each pixel as features

digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size = 0.2)
clf = RandomForestClassifier(oob_score = True)

In addition the cross validation estimates of model performance we break
our data further to exclude a dedicated final test set from the model fitting
and cross validation procedure. As before we will use a grid search on
model hyperparameters to try to find a good model. The parameters here
• n_estimators - the number of trees to grow in the forest. Typically

each tree is complex and unpruned.
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• max_features - the proportion of the feature set to consider at each
node split.

param_search = {
'n_estimators': [50, 100, 500], # of trees in forest
'max_features': [0.8, 0.5, 0.3]

}
output = GridSearchCV(clf, param_search, \

cv = 10, \
return_train_score = False)

output.fit(X_train, y_train)

We can examine the performance of the model through the cross validation
estimates of the default scoring function3. The best parameters and best

3 The default is accuracy, see previous sec-
tion for choosing a different scoring func-
tion.

accuracy score in the grid search are
output.best_params_
#> {'max_features': 0.3, 'n_estimators': 500}
output.best_score_
#> 0.9749514374514374

We can then see how well it does on the dedicated test set that it has never
seen before.

output.score(X_test, y_test)
#> 0.9694444444444444

This is a pretty high accuracy rate for classifying hand written digits, es-
pecially considering how grainy the images are. Below are the reference
images together with ground truth values and prediction for three digits in
the test set.
import matplotlib.pyplot as plt
val = output.predict(X_test[:3])
plt.figure(figsize = [10, 7.5])
plt.gray()
for i in range(3):

ax = plt.subplot(1, 3, i+1)
ax.set_title("Real: {} Predicted: {}".format(val[i], y_test[i]))
ax.matshow(X_test[i].reshape(8, 8))
ax.set_xticks(())
ax.set_yticks(())

plt.show()

5.2 Support vector machines

A support vector classifier is a classifier which predicts the class of an obser-
vation based on which side of a hyper plane it lies on. Essentially a hyper
plane is drawn through predictor space to try to separate most of the train-
ing observations into the two classes.4 A support vector classifier seeks a

4 Multinomial class predictions can bemade
by using a one against the rest rule for the
hyperplane.

linear decision boundary and hence on its own is poor in many situations.
A support vector machine hopes to find non-linear decision boundaries by
expanding the feature space.5 The support vector machine is an extension

5 Similar to the idea behind adding an x2

term in linear regression.
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Real: 5 Predicted: 5 Real: 5 Predicted: 5 Real: 3 Predicted: 3

Figure 5.2: Predicting handwritten digits
using a random forest classifier.

of the support vector classifier that does this space expansion in a particu-
lar way, namely using kernels. It is some, essentially arbitrary, function to
quantify the similarity between two vectors of predictors. Common kernels
are linear, polynomial and radial and are just a way to designate closeness
between observations. The kernel tells the model how strongly x should
influence the prediction of a point x∗ based on how close they are. By ex-
panding the feature space we can fit non-linear hyperplanes to separate the
classes.

Intuition

Imagine we want to classify points into black and blue classes given the
data as shown below

There is no way with a straight line that we could separate the two classes.
However if we added a new feature say z = x2 + y2 and generate a plot in
the z-y axis we see that a separation can be made.

When we transform that line back to the original axes it maps to a circular
boundary



32 jumpingrivers.com

Essentially the kernel is used to expand the original space into a higher
dimensional space, hopefully taking a non separable problem to a separable
one. So the kernel does the job of finding those features (like x2+y2 in our
example).

SVM’s are often considered one of the best, most stable classifiers.
from sklearn.svm import SVC
clf = SVC()
params = {

'gamma': [0.0001, 0.001, 0.01, 0.1], # small gamma should let data have stronger influence
'C': [0.5, 1, 1.5] # small C allow more misclassification in support vectors

}
output = GridSearchCV(clf, params, cv = 10, return_train_score = False)
output.fit(X_train,y_train)

import pandas as pd
pd.DataFrame(output.cv_results_)[['param_C','param_gamma','mean_test_score']]
#> param_C param_gamma mean_test_score
#> 0 0.5 0.0001 0.963826
#> 1 0.5 0.001 0.986781
#> 2 0.5 0.01 0.338918
#> 3 0.5 0.1 0.105779
#> 4 1 0.0001 0.974267
#> 5 1 0.001 0.990958
#> 6 1 0.01 0.776617
#> 7 1 0.1 0.112738
#> 8 1.5 0.0001 0.977744
#> 9 1.5 0.001 0.990958
#> 10 1.5 0.01 0.795406
#> 11 1.5 0.1 0.115516
output.score(X_test,y_test)
#> 0.9833333333333333
confusion_matrix(output.predict(X_test),y_test)
#> array([[42, 0, 0, 0, 0, 0, 0, 0, 0, 0],
#> [ 0, 46, 0, 0, 0, 0, 0, 0, 2, 0],
#> [ 0, 0, 27, 0, 0, 0, 0, 0, 0, 0],
#> [ 0, 0, 0, 38, 0, 0, 0, 0, 0, 0],
#> [ 0, 0, 0, 0, 29, 0, 0, 0, 0, 0],
#> [ 0, 0, 0, 0, 0, 38, 0, 0, 0, 0],
#> [ 0, 0, 0, 0, 0, 1, 40, 0, 0, 0],
#> [ 0, 0, 0, 1, 0, 0, 0, 28, 0, 0],
#> [ 0, 0, 0, 0, 1, 0, 0, 0, 29, 0],
#> [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 37]])

We could also plot the profile of our classifiers hyperparameters with re-
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spect to the scoring function. This would give some insight as to which hy-
perparameters we would try next in order to iteratively improve our model
fit.

res = pd.DataFrame(output.cv_results_)
color_map = {

0.5: 'r',
1.0: 'g',
1.5: 'b'

}
plt.figure()
for c in res.param_C.unique():

sub = res[res.param_C == c]
g = pd.to_numeric(sub['param_gamma'])
m = sub['mean_test_score']
s = sub['std_test_score']
plt.plot(g,m, color = color_map[c], label = c)
plt.fill_between(g,m-s,m+s,alpha = 0.1, color = color_map[c])

plt.xscale('Log')
plt.legend()
plt.show()

10 4 10 3 10 2 10 1

0.2

0.4

0.6

0.8

1.0 0.5
1
1.5

Figure 5.3: Profiling accuracy against the
hyperparameters for SVM classifier.
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Clustering

Cluster analysis is a term that covers a wide range of numerical techniques
for uncovering groups (or clusters) of observations in a dataset. For ex-
ample, with micrarray analysis, we might want to cluster genes that have
similar profiles.
These sorts of techniques are relatively easy when there are only a few
dimensions. For high dimensional spaceswe start to suffer from the curse of
dimensionality.1 This is because typical distance metrics such as Euclidean

1 https://en.wikipedia.org/wiki/
Curse_of_dimensionality.

distance become less meaningful.
With cluster analysis we are aiming to find gropus of observations that
are “similar”, so it is required that we define what “similar” means. Typi-
cally this is done by defining a distance function between two observations,
where a small distance indicates that two observations are similar. For ev-
ery pair of observations, xi and xj we need to define a corresponding dis-
tance, di,j . Since we have n observations, this corresponds to an n × n

distance matrix D.
Theoretically we can choose any distance function that defines a metric:
• All distances are positive, i.e. dij ≥ 0

• The distance of an observation with itself is 0, i.e. dii = 0

• A zero distance implies that the observations are equal, i.e. dij = 0

implies that xi = xj

• The distance between observation i and j is the same as between j and
i, i.e. dij = dji

6.1 Euclidean distance (L2 norm)

Euclidean distance, or L2 norm is the sum of squared distances between
each variable for a pair of observations.

dij = d(xi, xj) =

p∑
k=1

(xi,k − xj,k)
2

Or in matrix notation

dij = d(xi, xj) =
√
(xi−xj)T (xi−xj)

In the absence of prior knowledge over good choice of distance function this
is a reasonable default measure. It is almost certainly the most commonly
used distance function in applied cluster analysis.

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality
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6.2 Manhattan distance (L1 norm)

The Manhattan distance, or L1 norm is the sum of absolute distances be-
tween the variables

dij = d(xi, xj) =

p∑
k=1

|xi,k − xj,k|

The Manhattan distance often turns out to be a good choice when there is
sparsity in the features.

6.3 Mahalanobis distance

Where variables are highly correlated, there is often advantage in consid-
ering the Mahalonibis distance. This is essentially similar to the Euclidean
metric but rescaled by the covariance matrix.

dij = (xi−xj)
TS−1(xi−xj)

where S is the covariance matrix.
• If S is the identity matrix, i.e. the diagonals are 1, then mahalanobis

reduces to the Euclidean distance
• If S is diagonal, i.e. the correlation between the variables is 0, then

dij = d(xi, xj) =

p∑
k=1

(xi,k − xj,k)
2

s2i

6.4 Heirarchical clustering

Given that we can measure distance between pairs of observations we can
begin our clustering. Heirarchical cluster analysis is an approach to find-
ing clusters in a nested, or heirarchical structure. Heirarchical clustering
typically falls into one of two strategies:
• Agglomerative (Bottom up)
• Divisive (Top down)
Agglomerative strategies appear to be more common. An agglomerative
strategy to cluster analysis could be defined as follows:
1. Initialise: Start with n clusters, C1 , C2, . . . , Cn, with Ci containing just

the single, p dimensional observation xi

2. Find the minimum distance, dij between the clusters and combine the
clusters

3. The number of clusters has now decreased by one
4. If there is more than a single cluster remaining, return to step 2
One of the key steps here requires definition of minimum distance between
clusters. In order to put this algorithm into practice, in addition to requir-
ing distances between observations, we also need to be able to calculate
distance between clusters.
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Single linkage

Single linkage defines the distance between two clusters as the minumum
distance between observations in the clusters

dc1,c2 = min
i∈c1,j∈c2

dij

The single linkage method tends to perform well in situations where data
are not globular. However it also tends to lead to a rich get richer type
attitude leading to very unbalanced final cluster sizes. An additional ad-
vantage of single linkage is that it is very efficient to compute, leading to a
preferance in the case of large numbers of observations.

Complete Linkage

Complete linkage gives the distance between two clusters as the maximum
distance between observations

dc1,c2 = max
i∈c1,j∈c2

dij

This is in effect the opposite of single linkage. It tends to perform well in
the presence of lots of noise, however it tends to have bias towards globular
structures and tends to break large clusters.

Average linkage

The average distance between observations in clusters

dc1,c2 =
1

nc1nc2

∑
c1

∑
c2

dij

Tends to exhibit similar properties to complete link age, but is more expen-
sive to compute. It is not as popular as other choices in practice.

Worked example

To describe how agglomerative heirachical clustering works in practice we
shall work through a very small toy example by hand.
import pandas as pd
import numpy as np

example = pd.DataFrame({
'x': [7, 2, 1, 4],
'y': [4, 4, 2, 8]

})

example
#> x y
#> 0 7 4
#> 1 2 4
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#> 2 1 2
#> 3 4 8

If we were to use the Manhattan distance between observations, this would
yield a distance matrix of

def manhattan(x, y):
return np.sum(np.abs(x - y))

D = pd.DataFrame(np.array([
[manhattan(

example.iloc[i,:],
example.iloc[j,:]

) if j <= i else 0 for j in range(4)] for i in range(4)
]),
index=['c'+str(i) for i in range(1,5)],
columns=['c'+str(i) for i in range(1,5)])
D
#> c1 c2 c3 c4
#> c1 0 0 0 0
#> c2 5 0 0 0
#> c3 8 3 0 0
#> c4 7 6 9 0

If we were to use the single linkage, then we look for the minimum, non-
zero distance between these clusters. In this case that is 3, between cluster
c3 and c2. If we were to merge these two clusters we end up with a new
distance matrix

pd.DataFrame(
[[0,0,0],
[7,0,0],
[5,6,0]]

, index=['c1','c4','(c2,c3)'],
columns=['c1','c4','(c2,c3)'])
#> c1 c4 (c2,c3)
#> c1 0 0 0
#> c4 7 0 0
#> (c2,c3) 5 6 0

The next smallest distance is between c1 and (c2, c3).

6.5 Clustering in python

sklearn has a cluster module with a class for Agglomerative clustering,
sklearn.cluster.AgglomerativeClustering

from sklearn.cluster import AgglomerativeClustering

hc = AgglomerativeClustering(
affinity='precomputed',
linkage='single'
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)
hc.fit(D)

## TODO improve dendrogram
#> AgglomerativeClustering(affinity='precomputed', compute_full_tree='auto',
#> connectivity=None, distance_threshold=None,
#> linkage='single', memory=None, n_clusters=2)
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram

def plot_dendrogram(model, **kwargs):
"""
Compute the distances between each pair of children and
a position for each child node. Then create a linkage
matrix, and plot the dendrogram.
"""
distance = np.arange(model.children_.shape[0])
position = np.arange(2, model.children_.shape[0]+2)

linkage_matrix = np.column_stack([
model.children_, distance, position]

).astype(float)

fig, ax = plt.subplots(figsize=(15, 7))

ax = dendrogram(linkage_matrix, orientation='left', **kwargs)

plt.tick_params(axis='x', bottom='off', top='off', labelbottom='off')
plt.tight_layout()
plt.show()

6.6 Example: USA crime

This dataset contains statistics, in arrests per 100,000 residents for a few
crimes in each of the 50 states in 1973. There are 4 variables in total:
• Murder: Murder arrests (per 100,000)
• Assault: Assault arrests (per 100,000)
• UrbanPop: Percent urban population
• Rape: Rape arrests (per 100,000)
import jrpyml
arrests = jrpyml.datasets.usarrests.load_data()

Since we are dealing with distances between observations, we should
rescale our data to ensure that measurement scale has no effect, so we can
create a pipeline that will scale before performing the clustering. We can
import the necessary modules:
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from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.cluster import AgglomerativeClustering

Drawing the dedrogram

Unfortunately, sklearn doesn’t have a convenient facility to draw dendro-
grams, however the scipy library does. We can create a linkage object which
will define the tree, then visualise
from scipy.cluster.hierarchy import linkage, dendrogram
import matplotlib.pyplot as plt

scaler = StandardScaler()
link = linkage(

scaler.fit_transform(arrests),
method='complete', metric='euclidean'

)
plt.figure()
dendrogram(

link,
leaf_label_func= lambda i: arrests.index[i]

)
#> {'icoord': [[5.0, 5.0, 15.0, 15.0], [25.0, 25.0, 35.0, 35.0], [10.0, 10.0, 30.0, 30.0], [55.0, 55.0, 65.0, 65.0], [45.0, 45.0, 60.0, 60.0], [85.0, 85.0, 95.0, 95.0], [75.0, 75.0, 90.0, 90.0], [52.5, 52.5, 82.5, 82.5], [20.0, 20.0, 67.5, 67.5], [125.0, 125.0, 135.0, 135.0], [115.0, 115.0, 130.0, 130.0], [105.0, 105.0, 122.5, 122.5], [155.0, 155.0, 165.0, 165.0], [145.0, 145.0, 160.0, 160.0], [113.75, 113.75, 152.5, 152.5], [195.0, 195.0, 205.0, 205.0], [185.0, 185.0, 200.0, 200.0], [175.0, 175.0, 192.5, 192.5], [225.0, 225.0, 235.0, 235.0], [215.0, 215.0, 230.0, 230.0], [255.0, 255.0, 265.0, 265.0], [245.0, 245.0, 260.0, 260.0], [275.0, 275.0, 285.0, 285.0], [252.5, 252.5, 280.0, 280.0], [295.0, 295.0, 305.0, 305.0], [266.25, 266.25, 300.0, 300.0], [222.5, 222.5, 283.125, 283.125], [183.75, 183.75, 252.8125, 252.8125], [133.125, 133.125, 218.28125, 218.28125], [43.75, 43.75, 175.703125, 175.703125], [325.0, 325.0, 335.0, 335.0], [315.0, 315.0, 330.0, 330.0], [365.0, 365.0, 375.0, 375.0], [355.0, 355.0, 370.0, 370.0], [405.0, 405.0, 415.0, 415.0], [395.0, 395.0, 410.0, 410.0], [385.0, 385.0, 402.5, 402.5], [362.5, 362.5, 393.75, 393.75], [345.0, 345.0, 378.125, 378.125], [322.5, 322.5, 361.5625, 361.5625], [435.0, 435.0, 445.0, 445.0], [455.0, 455.0, 465.0, 465.0], [440.0, 440.0, 460.0, 460.0], [485.0, 485.0, 495.0, 495.0], [475.0, 475.0, 490.0, 490.0], [450.0, 450.0, 482.5, 482.5], [425.0, 425.0, 466.25, 466.25], [342.03125, 342.03125, 445.625, 445.625], [109.7265625, 109.7265625, 393.828125, 393.828125]], 'dcoord': [[0.0, 0.7180984285039761, 0.7180984285039761, 0.0], [0.0, 0.9924604112760993, 0.9924604112760993, 0.0], [0.7180984285039761, 1.2845916344921338, 1.2845916344921338, 0.9924604112760993], [0.0, 0.2079437976133826, 0.2079437976133826, 0.0], [0.0, 0.6522714208221354, 0.6522714208221354, 0.2079437976133826], [0.0, 0.7464962542035871, 0.7464962542035871, 0.0], [0.0, 0.8371069716312288, 0.8371069716312288, 0.7464962542035871], [0.6522714208221354, 1.3464832390078612, 1.3464832390078612, 0.8371069716312288], [1.2845916344921338, 2.3185311085112903, 2.3185311085112903, 1.3464832390078612], [0.0, 0.7109765828248565, 0.7109765828248565, 0.0], [0.0, 1.0072266290663898, 1.0072266290663898, 0.7109765828248565], [0.0, 1.1029475820823267, 1.1029475820823267, 1.0072266290663898], [0.0, 0.59956022650398, 0.59956022650398, 0.0], [0.0, 1.2629687100208244, 1.2629687100208244, 0.59956022650398], [1.1029475820823267, 2.2859996671935696, 2.2859996671935696, 1.2629687100208244], [0.0, 0.8058634904273213, 0.8058634904273213, 0.0], [0.0, 1.4817299075280683, 1.4817299075280683, 0.8058634904273213], [0.0, 1.639527559058541, 1.639527559058541, 1.4817299075280683], [0.0, 0.4990993894073977, 0.4990993894073977, 0.0], [0.0, 1.0459722539606524, 1.0459722539606524, 0.4990993894073977], [0.0, 0.43312429085085896, 0.43312429085085896, 0.0], [0.0, 0.5357100654046991, 0.5357100654046991, 0.43312429085085896], [0.0, 0.7860298248284557, 0.7860298248284557, 0.0], [0.5357100654046991, 0.8498311917262102, 0.8498311917262102, 0.7860298248284557], [0.0, 1.0818450636699195, 1.0818450636699195, 0.0], [0.8498311917262102, 1.6754123340769038, 1.6754123340769038, 1.0818450636699195], [1.0459722539606524, 1.8839143855242062, 1.8839143855242062, 1.6754123340769038], [1.639527559058541, 2.500007070380064, 2.500007070380064, 1.8839143855242062], [2.2859996671935696, 3.119697509057193, 3.119697509057193, 2.500007070380064], [2.3185311085112903, 4.445218342119738, 4.445218342119738, 3.119697509057193], [0.0, 1.2089769072372043, 1.2089769072372043, 0.0], [0.0, 1.413061454059571, 1.413061454059571, 1.2089769072372043], [0.0, 0.3537743681310408, 0.3537743681310408, 0.0], [0.0, 0.8543564542245922, 0.8543564542245922, 0.3537743681310408], [0.0, 0.5408248189680332, 0.5408248189680332, 0.0], [0.0, 1.091064514746985, 1.091064514746985, 0.5408248189680332], [0.0, 1.2240377613967677, 1.2240377613967677, 1.091064514746985], [0.8543564542245922, 1.6615569215788915, 1.6615569215788915, 1.2240377613967677], [0.0, 1.8726191817551254, 1.8726191817551254, 1.6615569215788915], [1.413061454059571, 2.4706916680381408, 2.4706916680381408, 1.8726191817551254], [0.0, 0.7800624726117171, 0.7800624726117171, 0.0], [0.0, 1.0225018692038894, 1.0225018692038894, 0.0], [0.7800624726117171, 1.1429220506829263, 1.1429220506829263, 1.0225018692038894], [0.0, 0.7945530103578827, 0.7945530103578827, 0.0], [0.0, 1.1946964016190045, 1.1946964016190045, 0.7945530103578827], [1.1429220506829263, 2.361196534312094, 2.361196534312094, 1.1946964016190045], [0.0, 3.28848350618415, 3.28848350618415, 2.361196534312094], [2.4706916680381408, 4.464948571062968, 4.464948571062968, 3.28848350618415], [4.445218342119738, 6.138334936847244, 6.138334936847244, 4.464948571062968]], 'ivl': ['South Dakota', 'West Virginia', 'North Dakota', 'Vermont', 'Maine', 'Iowa', 'New Hampshire', 'Idaho', 'Montana', 'Nebraska', 'Kentucky', 'Arkansas', 'Virginia', 'Wyoming', 'Missouri', 'Oregon', 'Washington', 'Delaware', 'Rhode Island', 'Massachusetts', 'New Jersey', 'Connecticut', 'Minnesota', 'Wisconsin', 'Oklahoma', 'Indiana', 'Kansas', 'Ohio', 'Pennsylvania', 'Hawaii', 'Utah', 'Colorado', 'California', 'Nevada', 'Florida', 'Texas', 'Illinois', 'New York', 'Arizona', 'Michigan', 'Maryland', 'New Mexico', 'Alaska', 'Alabama', 'Louisiana', 'Georgia', 'Tennessee', 'North Carolina', 'Mississippi', 'South Carolina'], 'leaves': [40, 47, 33, 44, 18, 14, 28, 11, 25, 26, 16, 3, 45, 49, 24, 36, 46, 7, 38, 20, 29, 6, 22, 48, 35, 13, 15, 34, 37, 10, 43, 5, 4, 27, 8, 42, 12, 31, 2, 21, 19, 30, 1, 0, 17, 9, 41, 32, 23, 39], 'color_list': ['g', 'g', 'g', 'g', 'g', 'g', 'g', 'g', 'g', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'b', 'c', 'c', 'c', 'c', 'c', 'c', 'c', 'c', 'c', 'c', 'm', 'm', 'm', 'm', 'm', 'm', 'm', 'b', 'b']}
plt.show()
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This dendrogram suggests that 4 clusters are dominant.



40 jumpingrivers.com

pipe = Pipeline([
('prep', scaler),
('clus', AgglomerativeClustering(

n_clusters=4, affinity='euclidean',
linkage='complete'

))
])

labels = pipe.fit_predict(arrests)

6.7 K means clustering

One of the disadvanteges of heirarchical clustering is that it is relatively
computationally expensive. The number of operations scales with n3 so
when there are large numbers of observations this is often prohibitive. An
alternative popular method is k-means clustering.
In K-means clustering we use Euclidean metric for calculation of distances.
We need to decide a prior on a value of k to run the algorithm. With k-
means we place each observation into one of the k clusters. The k-means
refers to the mean vector in each cluster which are used to determine dis-
tance of each observation from the center of each cluster.
Lettingxij to denote the jth observation in the the ith cluster, the ith cluster
mean is simply

x̄i =
1

ni

ni∑
j=1

xij

K-means clustering is in some sense similar to one way ANOVA, the key
idea is reduction of variance.
We can define the total sum of squares as

SST =

k∑
i=1

nk∑
j=1

(xij − x̄)2

which is independent of k. We want to split the total variation in the data
set (SST ) into two components:
• SSW : variation within groups,
• SSE : variation between groups,
and aim to maximise SSE .
If

SST = SSW + SSE

where

SSW =

k∑
i=1

nk∑
j=1

(xij − x̄i)
2

and SSE = SST − SSW ,
thenwemaximiseSSE byminimisingSSW , effectively the variancewithin
the clusters.
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K-means algorithm

1. Initialise: Randomly allocate each observation to each cluster
2. Assignment: Assign each observation to the cluster whose mean has the

least squared Euclidean distance. (closest mean)
3. Update: Update the new cluster means
4. Repeat: Return to step 2
Guaranteed to converge (to a local minimum)

6.8 Toy Example

Suppose we have the following data set
1, 2, 3, 10, 11, 13
For k = 2 clusters, the groups should be {1, 2, 3} and {10, 11, 13}.
1. Initialise: Group 1: {1, 2, 13} & Group 2: {3, 10, 11}. This gives group

means of x̄1 = 5.33 and x̄2 = 8, with x̄ = 6.67

2. Assignment: Assign values to the closest mean. So we should move the
value 13 to Group 2 and the value 3 to Group 1.

3. Update: The new groups are {1, 2, 3} and {10, 11, 13}.
4. Stop: No new assignments needed.

6.9 Example: USA crime

Since we are often going to be using K-means clustering in situations that
calculating a full dendrogram is prohibitive we need an alternative method
for deciding on numbers of clusters. This is often done through use of an
“elbow” plot. We can run the clustering algorithm for many values of k
and generate a plot of the sums of squares looking for the point at which
reduction of sums of squres tails off.
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from jrpyml.datasets import usarrests

arrests = usarrests.load_data()

scaler = StandardScaler()
arrests_scaled = scaler.fit_transform(arrests)

sse = {}
estimators = {}
for k in range(1,10):

kmeans = KMeans(n_clusters=k).fit(
arrests_scaled

)
sse[k] = kmeans.inertia_
estimators[k] = kmeans



42 jumpingrivers.com

plt.figure()
plt.plot(list(sse.keys()), list(sse.values()))
plt.show()
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Whilst interpretation of this graph is clearly subjective, it does appear to
tail off after 4 clusters, which is also what we found with the agglomerative
clustering.
We can then extract the cluster labels and centers if we need them.

estimators[4].labels_
#> array([3, 1, 1, 3, 1, 1, 0, 0, 1, 3, 0, 2, 1, 0, 2, 0, 2, 3, 2, 1, 0, 1,
#> 2, 3, 1, 2, 2, 1, 2, 0, 1, 1, 3, 2, 0, 0, 0, 0, 0, 3, 2, 3, 1, 0,
#> 2, 0, 0, 2, 2, 0], dtype=int32)
estimators[4].cluster_centers_
#> array([[-0.49440658, -0.3864845 , 0.58167593, -0.26431024],
#> [ 0.70212683, 1.04999438, 0.72997363, 1.28990383],
#> [-0.97130281, -1.11783581, -0.93954982, -0.97657842],
#> [ 1.42622412, 0.88321132, -0.82279055, 0.01946669]])
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