#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 14 10:46:44 2022 @author: tanu """ # Link: https://laptrinhx.com/how-to-run-30-machine-learning-models-with-2-lines-of-code-1521663246/ import pyforest import warnings warnings.filterwarnings("ignore") from sklearn import metrics from sklearn.metrics import accuracy_score import lazypredict from lazypredict.Supervised import LazyClassifier #%% target = target1 #target = target3 X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df, target, test_size = 0.33, random_state = 42) #%% clf = LazyClassifier(verbose=0,ignore_warnings=True) modelsN, predictionsN = clf.fit(X_trainN, X_testN, y_trainN, y_testN) mm_lpN = modelsN #%% # DOESN't work as need to incorporate pipeline(one hot encoder) models, predictions = clf.fit(X_train, X_test, y_train, y_test) mm_lp = models model1 = Pipeline(steps = [('preprocess', MinMaxScaler()) , ('multiModels', clf) ]) models, predictions = model1.fit(X_trainN, X_testN, y_trainN, y_testN)