#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 15 11:09:50 2022 @author: tanu """ # stratified shuffle split X_train, X_test, y_train, y_test = train_test_split(num_df_wtgt[numerical_FN] , num_df_wtgt['mutation_class'] , test_size = 0.33 , **rs , shuffle = True , stratify = num_df_wtgt['mutation_class']) y_train.to_frame().value_counts().plot(kind = 'bar') y_test.to_frame().value_counts().plot(kind = 'bar') MultClassPipelineCV(X_train, X_test, y_train, y_test , input_df = num_df_wtgt[numerical_FN] , var_type = 'numerical') skf_cv_scores = MultClassPipelineCV(X_train, X_test, y_train, y_test , input_df = num_df_wtgt[numerical_FN] , var_type = 'numerical') pp.pprint(skf_cv_scores) # construct a df skf_cv_scores_df = pd.DataFrame(skf_cv_scores) skf_cv_scores_df skf_cv_scores_df_test = skf_cv_scores_df.filter(like='test_', axis=0) skf_cv_scores_df_train = skf_cv_scores_df.filter(like='train_', axis=0)