#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Feb 24 10:48:10 2022 @author: tanu """ ############################################################################### # questions: # which data to use: merged_df3 or merged_df2 # which is the target? or_mychisq or drtype col # scaling: can it be from -1 to 1? # how to include the mutation information? # 'wild_type', 'mutant', 'postion' # whether to log transform the af and or cols # to allow mean mode values to be imputed for validation set # whether to calculate mean, median accounting for NA or removing them? # strategy: # available data = X_train # available data but NAN = validation_test # test data: mut generated not in mcsm ############################################################################### import os, sys import re from sklearn.datasets import load_boston from sklearn import datasets from sklearn import linear_model from sklearn import preprocessing import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np print(np.__version__) print(pd.__version__) from statistics import mean, stdev from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_validate from sklearn.metrics import make_scorer from sklearn.ensemble import RandomForestClassifier from sklearn.pipeline import Pipeline from sklearn.pipeline import make_pipeline from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.metrics import confusion_matrix from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import OneHotEncoder from sklearn.compose import make_column_transformer from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score from sklearn.metrics import plot_precision_recall_curve import itertools #%% read data homedir = os.path.expanduser("~") os.chdir(homedir + "/git/ML_AI_training/test_data") # this needs to be merged_df2 or merged_df3? #gene 'pncA' drug = 'pyrazinamide' my_df = pd.read_csv("pnca_merged_df3.csv") my_df.dtypes my_df_cols = my_df.columns #%% # GET Y # Y = my_df.loc[:,drug] #has NA dm_om_map = {'DM': 1, 'OM': 0} my_df['resistance'] = my_df['mutation_info_labels'].map(dm_om_map) # sanity check my_df['resistance'].value_counts() my_df['mutation_info_labels'].value_counts() Y = my_df['resistance'] #%% # GET X cols = my_df.columns X = my_df[['ligand_distance' , 'ligand_affinity_change' , 'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2', 'consurf_score' , 'snap2_score' #, 'snap2_accuracy_pc' , 'asa' , 'rsa']] #%% #################################### # SIMPLEST case of train_test split # Random forest # one hot encoder # MinMaxScaler # https://towardsdatascience.com/my-random-forest-classifier-cheat-sheet-in-python-fedb84f8cf4f #################################### seed = 50 X_train, X_test, y_train, y_test = train_test_split(X,Y , test_size = 0.333 , random_state = seed) features_to_encode = list(X_train.select_dtypes(include = ['object']).columns) col_trans = make_column_transformer( (OneHotEncoder(),features_to_encode), remainder = "passthrough" ) MinMaxS = preprocessing.MinMaxScaler() standardS = preprocessing.StandardScaler() rf_classifier = RandomForestClassifier( min_samples_leaf=50, n_estimators=150, bootstrap=True, oob_score=True, n_jobs=-1, random_state=seed, max_features='auto') pipe = make_pipeline(col_trans #, MinMaxS #, standardS , rf_classifier) pipe.fit(X_train, y_train) y_pred = pipe.predict(X_test) accuracy_score(y_test, y_pred) print("\nModel evaluation:\n") print(f"Accuracy: {round(accuracy_score(y_test,y_pred),3)*100} %") print(f"Recall: {round(recall_score(y_test,y_pred),3)*100} %") print(f"Precision: {round(precision_score(y_test,y_pred),3)*100} %") print(f"F1-score: {round(f1_score(y_test,y_pred),3)*100} %") recall_score(y_test, y_pred) precision_score(y_test, y_pred) f1_score(y_test, y_pred) roc_auc_score (y_test, y_pred) # not sure! roc_curve(y_test, y_pred) # not sure! disp = plot_precision_recall_curve(pipe, X_test, y_test) train_probs = pipe.predict_proba(X_train)[:,1] probs = pipe.predict_proba(X_test)[:, 1] train_predictions = pipe.predict(X_train) print(f'Train ROC AUC Score: {roc_auc_score(y_train, train_probs)}') print(f'Test ROC AUC Score: {roc_auc_score(y_test, probs)}') def evaluate_model(y_pred, probs,train_predictions, train_probs): baseline = {} baseline['recall']=recall_score(y_test, [1 for _ in range(len(y_test))]) baseline['precision'] = precision_score(y_test, [1 for _ in range(len(y_test))]) baseline['roc'] = 0.5 results = {} results['recall'] = recall_score(y_test, y_pred) results['precision'] = precision_score(y_test, y_pred) results['roc'] = roc_auc_score(y_test, probs) train_results = {} train_results['recall'] = recall_score(y_train, train_predictions) train_results['precision'] = precision_score(y_train, train_predictions) train_results['roc'] = roc_auc_score(y_train, train_probs) # for metric in ['recall', 'precision', 'roc']: # print(f"Baseline: {round(baseline[metric], 2)}Test: {round(results[metric], 2)} Train: {round(train_results[metric], 2)}") # Calculate false positive rates and true positive rates base_fpr, base_tpr, _ = roc_curve(y_test, [1 for _ in range(len(y_test))]) model_fpr, model_tpr, _ = roc_curve(y_test, probs) plt.figure(figsize = (8, 6)) plt.rcParams['font.size'] = 16 # Plot both curves plt.plot(base_fpr, base_tpr, 'b', label = 'baseline') plt.plot(model_fpr, model_tpr, 'r', label = 'model') plt.legend(); plt.xlabel('False Positive Rate'); plt.ylabel('True Positive Rate'); plt.title('ROC Curves'); plt.show() # Recall Baseline: 1.0 Test: 0.92 Train: 0.93 # Precision Baseline: 0.48 Test: 0.9 Train: 0.91 # Roc Baseline: 0.5 Test: 0.97 Train: 0.97 evaluate_model(y_pred,probs,train_predictions,train_probs) def plot_confusion_matrix(cm, classes, normalize = False, title='Confusion matrix', cmap=plt.cm.Greens): # can change color plt.figure(figsize = (10, 10)) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title, size = 24) plt.colorbar(aspect=4) tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45, size = 14) plt.yticks(tick_marks, classes, size = 14) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. # Label the plot for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), fontsize = 20, horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.grid(None) plt.tight_layout() plt.ylabel('True label', size = 18) plt.xlabel('Predicted label', size = 18) # Let's plot it out cm = confusion_matrix(y_test, y_pred) plot_confusion_matrix(cm, classes = ['0 - Susceptible', '1 - Resistant'], title = 'R/S Confusion Matrix') print(rf_classifier.feature_importances_) print(f" There are {len(rf_classifier.feature_importances_)} features in total") #%% #################################### # Model 2: case of stratified K-fold # Logistic regression # MinMaxScaler # https://towardsdatascience.com/stratified-k-fold-what-it-is-how-to-use-it-cf3d107d3ea2 [ Didn't work!] # https://www.geeksforgeeks.org/stratified-k-fold-cross-validation/ #################################### print('Class Ratio:', sum(Y)/len(Y)) print('Class Ratio:', sum(my_df['resistance'])/len(my_df['resistance'])) seed_skf = 50 skf = StratifiedKFold(n_splits = 10 , shuffle = True , random_state = seed_skf) lst_accu_stratified = [] scaler = preprocessing.MinMaxScaler() X_scaled = scaler.fit_transform(X) #X_scaled = X_scaled[:,[1,2,3]] #lr = linear_model.LogisticRegression(class_weight = 'unbalanced') lr = linear_model.LogisticRegression() for train_index, test_index in skf.split(X, Y): #print(train_index) #print(test_index) x_train_fold, x_test_fold = X_scaled[train_index], X_scaled[test_index] y_train_fold, y_test_fold = Y[train_index], Y[test_index] lr.fit(x_train_fold, y_train_fold) lst_accu_stratified.append(lr.score(x_test_fold, y_test_fold)) # print output print('List of possible accuracy', lst_accu_stratified) print('Max accuracy:', max(lst_accu_stratified)*100, "%") print('Min accuracy:', min(lst_accu_stratified)*100, "%") print('Mean accuracy:', mean(lst_accu_stratified)*100,"%") print('St Dev:', stdev(lst_accu_stratified)*100,"%") #%% #-------------------------------------- # Model2.1: same one but with pipeline # slightly different results when using # transformed or untransformed values! #-------------------------------------- model_logisP = Pipeline(steps = [('preprocess', preprocessing.MinMaxScaler()) , ('logis', LogisticRegression(class_weight = 'unbalanced')) ]) # changes stdev seed_skf = 50 skf = StratifiedKFold(n_splits = 10 , shuffle = True , random_state = seed_skf) X_array = np.array(X) lst_accu_stratified = [] for train_index, test_index in skf.split(X_array, Y): x_train_fold, x_test_fold = X_array[train_index], X_array[test_index] y_train_fold, y_test_fold = Y[train_index], Y[test_index] model_logisP.fit(x_train_fold, y_train_fold) lst_accu_stratified.append(model_logisP.score(x_test_fold, y_test_fold)) # print output print('List of possible accuracy', lst_accu_stratified) print('Max accuracy:', max(lst_accu_stratified)*100, "%") print('Min accuracy:', min(lst_accu_stratified)*100, "%") print('Mean accuracy:', mean(lst_accu_stratified)*100,"%") print('St Dev:', stdev(lst_accu_stratified)*100,"%") #################################### # Model 3: stratified K-fold # Random forest # MinMaxScaler # X: needs to be an array for str Kfold #################################### model_rf = Pipeline(steps = [('preprocess', preprocessing.MinMaxScaler()) , ('rf' , RandomForestClassifier(n_estimators=100, random_state=42))]) seed_skf = 50 skf = StratifiedKFold(n_splits = 10 , shuffle = True , random_state = seed_skf) X_array = np.array(X) lst_accu_stratified_rf = [] for train_index, test_index in skf.split(X_array, Y): x_train_fold, x_test_fold = X_array[train_index], X_array[test_index] y_train_fold, y_test_fold = Y[train_index], Y[test_index] model_rf.fit(x_train_fold, y_train_fold) lst_accu_stratified_rf.append(model_rf.score(x_test_fold, y_test_fold)) # print output print('List of possible accuracy', lst_accu_stratified_rf) print('Max accuracy:', max(lst_accu_stratified_rf)*100, "%") print('Min accuracy:', min(lst_accu_stratified_rf)*100, "%") print('Mean accuracy:', mean(lst_accu_stratified_rf)*100,"%") print('St Dev:', stdev(lst_accu_stratified_rf)*100,"%") #################################### # Model 4: Cross validate K-fold # Random forest # MinMaxScaler # X: needs to be an array for Kfold # FIXME: DOESNT WORK BECAUSE MSE is for LR, not Logistic or random? #################################### from sklearn.metrics import mean_squared_error, make_scorer from sklearn.model_selection import cross_validate score_fn = make_scorer(mean_squared_error) scores = cross_validate(model_rf, X_train, y_train , scoring = score_fn , cv = 10) from itertools import combinations def train(X): return cross_validate(model_rf, X, y_train , scoring = score_fn , cv = 10 , return_estimator = True)['test_score'] scores = [train(X_train.loc[:,vars]) for vars in combinations(X_train.columns,11)] means = [score.mean() for score in scores] #%% # https://stackoverflow.com/questions/52316237/finding-logistic-regression-weights-from-k-fold-cv from sklearn.linear_model import LogisticRegressionCV from sklearn.model_selection import KFold kf = KFold(n_splits=10, shuffle=True, random_state=42) logistic = LogisticRegressionCV(Cs=2, fit_intercept=True, cv=kf, verbose =1, random_state=42) logistic.fit(X_train, y_train) print("Train Coefficient:" , logistic.coef_) #weights of each feature print("Train Intercept:" , logistic.intercept_) #value of intercept #%% # https://machinelearningmastery.com/repeated-k-fold-cross-validation-with-python/ from sklearn.model_selection import cross_val_score from numpy import std cv = KFold(n_splits=10, random_state=1, shuffle=True) scores = cross_val_score(model_rf, X,Y, scoring='accuracy', cv=cv, n_jobs=-1) scores2 = cross_val_score(model_logisP, X, Y, scoring='accuracy', cv=cv, n_jobs=-1) # report performance print('Accuracy: %.3f (%.3f)' % (mean(scores), std(scores))) print('Accuracy: %.3f (%.3f)' % (mean(scores2), stdev(scores2)))