#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 4 14:54:30 2022 @author: tanu """ import os, sys import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import BernoulliNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.neural_network import MLPClassifier from sklearn.pipeline import Pipeline from xgboost import XGBClassifier from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score #%% homedir = os.path.expanduser("~") os.chdir(homedir + "/git/ML_AI_training/") # my function from MultClassPipe import MultClassPipeline #gene = 'pncA' #drug = 'pyrazinamide' #============== # directories #============== datadir = homedir + '/git/Data/' indir = datadir + drug + '/input/' outdir = datadir + drug + '/output/' #======= # input #======= infile_ml1 = outdir + gene.lower() + '_merged_df3.csv' #infile_ml2 = outdir + gene.lower() + '_merged_df2.csv' my_df = pd.read_csv(infile_ml1) my_df.dtypes my_df_cols = my_df.columns geneL_basic = ['pnca'] geneL_na = ['gid'] geneL_na_ppi2 = ['rpob'] geneL_ppi2 = ['alr', 'embb', 'katg'] #%% get cols mycols = my_df.columns #%%============================================================================ # GET Y # Target1: mutation_info_labels dm_om_map = {'DM': 1, 'OM': 0} target1 = my_df['mutation_info_labels'].map(dm_om_map) # Target2: drug drug_labels = drug + '_labels' drug_labels my_df[drug_labels] = my_df[drug].map({1: 'resistant', 0: 'sensitive'}) my_df[drug_labels].value_counts() my_df[drug_labels] = my_df[drug_labels].fillna('unknown') my_df[drug_labels].value_counts() target2 = my_df[drug_labels] # Target3: drtype drtype_labels = 'drtype_labels' my_df[drtype_labels] = my_df['drtype'].map({'Sensitive' : 0 , 'Other' : 0 , 'Pre-MDR' : 1 , 'MDR' : 1 , 'Pre-XDR' : 1 , 'XDR' : 1}) # target3 = my_df['drtype'] target3 = my_df[drtype_labels] # sanity checks target1.value_counts() my_df['mutation_info_labels'].value_counts() target2.value_counts() my_df[drug_labels].value_counts() target3.value_counts() my_df['drtype'].value_counts() #%% # GET X common_cols_stabilty = ['ligand_distance' , 'ligand_affinity_change' , 'duet_stability_change' , 'ddg_foldx' , 'deepddg' , 'ddg_dynamut2'] # Build stability columns ~ gene if gene.lower() in geneL_basic: x_stability_cols = common_cols_stabilty if gene.lower() in geneL_ppi2: x_stability_cols = common_cols_stabilty + ['mcsm_ppi2_affinity' , 'interface_dist'] if gene.lower() in geneL_na: x_stability_cols = common_cols_stabilty + ['mcsm_na_affinity'] if gene.lower() in geneL_na_ppi2: x_stability_cols = common_cols_stabilty + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist'] #D1148 get rid of na_index = my_df['mutationinformation'].index[my_df['mcsm_na_affinity'].apply(np.isnan)] my_df = my_df.drop(index=na_index) X_strF = ['asa' , 'rsa' , 'kd_values' , 'rd_values'] X_evolF = ['consurf_score' , 'snap2_score' , 'snap2_accuracy_pc'] # TODO: ADD ED values # Problematic due to NA # X_genomicF = ['af' # , 'or_mychisq' # , 'or_logistic' # , 'or_fisher' # , 'pval_fisher'] #%% try combinations X_vars1 = my_df[x_stability_cols] X_vars2 = my_df[X_strF] X_vars3 = my_df[X_evolF] #X_vars4 = my_df[X_genomicF] #X_vars4 = X_vars4.fillna('unknown') # need one hot encoder! X_vars5 = my_df[x_stability_cols + X_strF] X_vars6 = my_df[x_stability_cols + X_evolF] #X_vars7 = my_df[x_stability_cols + X_genomicF] X_vars8 = my_df[X_strF + X_evolF] #X_vars9 = my_df[X_strF + X_genomicF] #X_vars10 = my_df[X_evolF + X_genomicF] X_vars11 = my_df[x_stability_cols + X_strF + X_evolF ] #X_vars12 = my_df[x_stability_cols + X_strF + X_evolF + X_genomicF] #%% X_vars1.shape[1] # TODO: stratified cross validate # Train-test Split # TARGET1 X_train, X_test, y_train, y_test = train_test_split(X_vars1, target1, test_size = 0.33, random_state = 42) MultClassPipeline(X_train, X_test, y_train, y_test) # TARGET3 X_train3, X_test3, y_train3, y_test3 = train_test_split(X_vars5, target3, test_size = 0.33, random_state = 42) MultClassPipeline(X_train3, X_test3, y_train3, y_test3)