from UQ_yc_RunAllClfs import run_all_ML #%% CALL function #run_all_ML(input_pd=X, target_label=y, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed') # Baseline_data YC_resD2 = run_all_ML(input_pd=X, target_label=y, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed') CVResultsDF_baseline = YC_resD2['CrossValResultsDF'] CVResultsDF_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) BTSResultsDF_baseline = YC_resD2['BlindTestResultsDF'] BTSResultsDF_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) # from FUNC YC_resD2 = run_all_ML(input_pd=df2['X'], target_label=df2['y'], blind_test_input_df=df2['X'], blind_test_target=df2['y'], preprocess = True, var_type = 'mixed') CVResultsDF_baseline = YC_resD2['CrossValResultsDF'] BTSResultsDF_baseline = YC_resD2['BlindTestResultsDF'] YC_resD_ros = run_all_ML(input_pd=df2['X_ros'], target_label=df2['y_ros'], blind_test_input_df=df2['X'], blind_test_target=df2['y'], preprocess = True, var_type = 'mixed') CVResultsDF_ros = YC_resD_ros['CrossValResultsDF'] BTSResultsDF_ros = YC_resD_ros['BlindTestResultsDF'] # from sklearn.utils import all_estimators # for name, algorithm in all_estimators(type_filter="classifier"): # clf = algorithm() # print('Name:', name, '\nAlgo:', clf) # Random Oversampling YC_resD_ros = run_all_ML(input_pd=X_ros, target_label=y_ros, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed') CVResultsDF_ros = YC_resD_ros['CrossValResultsDF'] CVResultsDF_ros.sort_values(by=['matthew'], ascending=False, inplace=True) BTSResultsDF_ros = YC_resD_ros['BlindTestResultsDF'] BTSResultsDF_ros.sort_values(by=['matthew'], ascending=False, inplace=True) # Random Undersampling YC_resD_rus = run_all_ML(input_pd=X_rus, target_label=y_rus, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed') CVResultsDF_rus = YC_resD_rus['CrossValResultsDF'] CVResultsDF_rus.sort_values(by=['matthew'], ascending=False, inplace=True) BTSResultsDF_rus = YC_resD_rus['BlindTestResultsDF'] BTSResultsDF_rus.sort_values(by=['matthew'], ascending=False, inplace=True) # Random Oversampling+Undersampling YC_resD_rouC = run_all_ML(input_pd=X_rouC, target_label=y_rouC, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed') CVResultsDF_rouC = YC_resD_rouC['CrossValResultsDF'] CVResultsDF_rouC.sort_values(by=['matthew'], ascending=False, inplace=True) BTSResultsDF_rouC = YC_resD_rouC['BlindTestResultsDF'] BTSResultsDF_rouC.sort_values(by=['matthew'], ascending=False, inplace=True) # SMOTE NC YC_resD_smnc = run_all_ML(input_pd=X_smnc, target_label=y_smnc, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed') CVResultsDF_smnc = YC_resD_smnc['CrossValResultsDF'] CVResultsDF_smnc.sort_values(by=['matthew'], ascending=False, inplace=True) BTSResultsDF_smnc = YC_resD_smnc['BlindTestResultsDF'] BTSResultsDF_smnc.sort_values(by=['matthew'], ascending=False, inplace=True) ############################################################################## #============================================ # BASELINE models with dissected featues #============================================ # Genomics yC_gf = run_all_ML(input_pd=X[X_genomicFN], target_label=y, blind_test_input_df=X_bts[X_genomicFN], blind_test_target=y_bts, preprocess = True, var_type = 'mixed') yc_gfCT_baseline= yC_gf['CrossValResultsDF'] yc_gfCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) yc_gfBT_baseline = yC_gf['BlindTestResultsDF'] yc_gfBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) # Evolutionary yC_ev = run_all_ML(input_pd=X[X_evolFN], target_label=y, blind_test_input_df=X_bts[X_evolFN], blind_test_target=y_bts, preprocess = True, var_type = 'mixed') yc_evCT_baseline= yC_ev['CrossValResultsDF'] yc_evCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) yc_evBT_baseline = yC_ev['BlindTestResultsDF'] yc_evBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) # strucF:All yC_sfall = run_all_ML(input_pd=X[X_strFN], target_label=y, blind_test_input_df=X_bts[X_strFN], blind_test_target=y_bts, preprocess = True, var_type = 'mixed') yc_sfallCT_baseline= yC_sfall['CrossValResultsDF'] yc_sfallCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) yc_sfallBT_baseline = yC_sfall['BlindTestResultsDF'] yc_sfallBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) # strucF:Common ONLY c = [x for x in X_ssFN if x not in X_foldX_cols] yC_sfco= run_all_ML(input_pd=X[X_stabilityN], target_label=y , blind_test_input_df=X_bts[x_stabilityN] , blind_test_target=y_bts, preprocess = True, var_type = 'mixed') yc_sfcoCT_baseline= yC_sfco['CrossValResultsDF'] yc_sfcoCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) yc_sfcoBT_baseline = yC_sfco['BlindTestResultsDF'] yc_sfcoBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) # strucF:common_stability + foldX_cols i.e interaction yC_fxss= run_all_ML(input_pd=X[common_cols_stabiltyN+foldX_cols], target_label=y , blind_test_input_df=X_bts[common_cols_stabiltyN+foldX_cols] , blind_test_target=y_bts, preprocess = True, var_type = 'mixed') yc_fxssCT_baseline= yC_fxss['CrossValResultsDF'] yc_fxssCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) yc_fxssBT_baseline = yC_fxss['BlindTestResultsDF'] yc_fxssBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) # categorical yC_cat= run_all_ML(input_pd=X[categorical_FN], target_label=y , blind_test_input_df=X_bts[categorical_FN] , blind_test_target=y_bts, preprocess = True, var_type = 'mixed') yc_catCT_baseline= yC_cat['CrossValResultsDF'] yc_catCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) yc_catBT_baseline = yC_cat['BlindTestResultsDF'] yc_catBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True) #================================================= # Dissected features with Over and Undersampling #=================================================