#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu May 26 05:19:25 2022 @author: tanu """ #%% https://www.kite.com/blog/python/smote-python-imbalanced-learn-for-oversampling/ import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.svm import SVC from imblearn.over_sampling import SMOTE #%%############################################################################ def train_SVM(df): # select the feature columns X = df.loc[:, df.columns != 'label'] # select the label column y = df.label # train an SVM with linear kernel clf = SVC(kernel='linear') clf.fit(X, y) return clf def plot_svm_boundary(clf, df, title): fig, ax = plt.subplots() X0, X1 = df.iloc[:, 0], df.iloc[:, 1] x_min, x_max = X0.min() - 1, X0.max() + 1 y_min, y_max = X1.min() - 1, X1.max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) out = ax.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8) ax.scatter(X0, X1, c=df.label, cmap=plt.cm.coolwarm, s=20, edgecolors='k') ax.set_ylabel('y') ax.set_xlabel('x') ax.set_title(title) plt.show() #%%############################################################################ # SMOTE number of neighbors #k = 1 (pnca, extra trees baseline is 0.49,numerical only) k = 1 sm = SMOTE(sampling_strategy = 'auto', k_neighbors = k, **rs) X_sm, y_sm = sm.fit_resample(X, y) print(len(X_sm)) #228 print(Counter(y)) y_sm_df = y_sm.to_frame() y_sm_df.value_counts().plot(kind = 'bar') oversample = RandomOverSampler(sampling_strategy='minority') X_ros, y_ros = oversample.fit_resample(X, y) print(len(X_ros)) #228 undersample = RandomUnderSampler(sampling_strategy='majority') X_rus, y_rus = undersample.fit_resample(X, y) print(len(X_rus)) #142 sm_enn = SMOTEENN(enn=EditedNearestNeighbours(sampling_strategy='all')) X_enn, y_enn = sm_enn.fit_resample(X, y) print(len(X_enn)) #53