#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 4 15:25:33 2022 @author: tanu """ #%% import os, sys import pandas as pd import numpy as np import pprint as pp import random from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import BernoulliNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.neural_network import MLPClassifier from sklearn.pipeline import Pipeline from xgboost import XGBClassifier from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler, OneHotEncoder from sklearn.model_selection import cross_validate from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef from statistics import mean, stdev, median, mode #%% rs = {'random_state': 42} # Done: add preprocessing step with one hot encoder # TODO: supply stratified K-fold cv train and test data # TODO: get accuracy and other scores through K-fold cv # Multiple Classification - Model Pipeline def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical','mixed'], skf_splits = 10): ''' @ param input_df: input features @ type: df (gets converted to np.array for stratified Kfold, and helps identify names to apply column transformation) @param y_outputF: target (or output) feature @type: df or np.array returns multiple classification model scores ''' # Determine categorical and numerical features numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns numerical_ix categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns categorical_ix # Determine preprocessing steps ~ var_type if var_type == 'numerical': t = [('num', MinMaxScaler(), numerical_ix)] if var_type == 'categorical': t = [('cat', OneHotEncoder(), categorical_ix)] if var_type == 'mixed': t = [('cat', OneHotEncoder(), categorical_ix) , ('num', MinMaxScaler(), numerical_ix)] col_transform = ColumnTransformer(transformers = t , remainder='passthrough') #%% Define classification models to run log_reg = LogisticRegression(**rs) nb = BernoulliNB() knn = KNeighborsClassifier() svm = SVC(**rs) mlp = MLPClassifier(max_iter = 500, **rs) dt = DecisionTreeClassifier(**rs) et = ExtraTreesClassifier(**rs) rf = RandomForestClassifier(**rs) rf2 = RandomForestClassifier( min_samples_leaf = 50, n_estimators = 150, bootstrap = True, oob_score = True, n_jobs = -1, random_state = 42, max_features = 'auto') xgb = XGBClassifier(**rs, verbosity = 0) classification_metrics = { 'F1_score': [] ,'MCC': [] ,'Precision': [] ,'Recall': [] ,'Accuracy': [] ,'ROC_curve': [] } models = [ ('Logistic Regression' , log_reg) #, ('Naive Bayes' , nb) , ('K-Nearest Neighbors', knn) # , ('SVM' , svm) # , ('MLP' , mlp) # , ('Decision Tree' , dt) # , ('Extra Trees' , et) # , ('Random Forest' , rf) # , ('Naive Bayes' , nb) #, ('Random Forest2' , rf2) #, ('XGBoost' , xgb) ] skf = StratifiedKFold(n_splits = skf_splits , shuffle = True , **rs) skf_dict = {} fold_no = 1 fold_dict={} for model_name, model in models: fold_dict.update({ model_name: {}}) #scores_df = pd.DataFrame() for train_index, test_index in skf.split(input_df, y_targetF): x_train_fold, x_test_fold = input_df.iloc[train_index], input_df.iloc[test_index] y_train_fold, y_test_fold = y_targetF.iloc[train_index], y_targetF.iloc[test_index] #print("Fold: ", fold_no, len(train_index), len(test_index)) # for keys in skf_dict: for model_name, model in models: print("start of model", model_name, " loop", fold_no) #skf_dict.update({model_name: classification_metrics }) model_pipeline = Pipeline(steps=[('prep' , col_transform) , ('classifier' , model)]) model_pipeline.fit(x_train_fold, y_train_fold) y_pred_fold = model_pipeline.predict(x_test_fold) #---------------- # Model metrics #---------------- score=f1_score(y_test_fold, y_pred_fold) mcc = matthews_corrcoef(y_test_fold, y_pred_fold) fold=("fold_"+str(fold_no)) fold_dict[model_name].update({fold: {}}) pp.pprint(fold_dict) print("end of model", model_name, " loop", fold_no) fold_dict[model_name][fold].update(classification_metrics) #fold_dict[model_name][fold]['F1_score'].append(score) fold_dict[model_name][fold].update({'F1_score': score}) fold_dict[model_name][fold].update({'MCC': mcc}) fold_no +=1 #pp.pprint(skf_dict) return(fold_dict) t3_res = MultClassPipeSKF(input_df = numerical_features_df , y_targetF = target1 , var_type = 'numerical' , skf_splits = 10) #pp.pprint(t3_res) #print(t3_res)