#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 29 12:21:34 2022 @author: tanu """ from sklearn.svm import SVC from sklearn.datasets import make_classification from yellowbrick.model_selection import RFECV # Instantiate RFECV visualizer with a linear SVM classifier visualizer = RFECV(SVC(kernel='linear', C=1)) visualizer.fit(X[numerical_FN], y) # Fit the data to the visualizer visualizer.show() numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns numerical_ix categorical_ix = X.select_dtypes(include=['object', 'bool']).columns categorical_ix # Determine preprocessing steps ~ var_type var_type = 'mixed' var_type = 'numerical' if var_type == 'numerical': t = [('num', MinMaxScaler(), numerical_ix)] if var_type == 'categorical': t = [('cat', OneHotEncoder(), categorical_ix)] if var_type == 'mixed': t = [('cat', OneHotEncoder(), categorical_ix) , ('num', MinMaxScaler(), numerical_ix)] t = [('num', MinMaxScaler(), numerical_ix) , ('cat', OneHotEncoder(), categorical_ix)] col_transform = ColumnTransformer(transformers = t , remainder='passthrough') #--------------ALEX help # col_transform # col_transform.fit(X) # test = col_transform.transform(X) # print(col_transform.get_feature_names_out()) # foo = col_transform.fit_transform(X) Xm = col_transform.fit_transform(X) # (foo == test).all() #----------------------- visualizer.fit(Xm, y) # Fit the data to the visualizer visualizer.show() visualizer.fit(X[numerical_FN], y) # Fit the data to the visualizer visualizer.show()