Solutions 3

Jumping Rivers

During the lecture we fit a logistic regression model to the breast
cancer data for classifying tumors in patients. We are going to fit a
KNN classifier to the same data.

o Construct the pipeline ready for fitting the model

from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

from sklearn.neighbors import KNeighborsClassifier

cancer = load_breast_cancer ()
X_train, y_train = cancer.data, cancer.target

model = Pipeline([
('pre', StandardScaler()),
('model', KNeighborsClassifier())
D

e« We want to find the best value of K for the classifier when optimis-
ing for recall, our motivation is that we want to correctly identify
as many of the malignant tumours as possible. Start with a grid
search over k = [1,5,10,20,50,100]

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import make_scorer, recall_score

def recall(y_true, y_pred):
return recall_score(y_true, y_pred, pos_label=0)

rec = make_scorer(recall)

clf = GridSearchCV(model, param_grid={
'model__n_neighbors': [1, 5, 10, 20, 50, 100]

}, cv=10, iid=False, return_train_score=False,
scoring=rec)

clf.fit(X_train, y_train)

## GridSearchCV(cv=10, error_score='raise-deprecating',

## estimator=Pipeline (memory=None,
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#Hit steps=[('pre"',

## StandardScaler (copy=True,

## with_mean=True,

#it with_std=True)),

#t ('model"’,

#it KNeighborsClassifier(algorithm="'auto',
## leaf _size=30,

## metric='minkowski',
# metric_params=None,
## n_jobs=None,

## n_neighbors=5, p=2,
#it weights='uniform'))],
#it verbose=False),

## iid=False, n_jobs=None,

#t param_grid={'model__n_neighbors': [1, 5, 10, 20, 50, 1001},

## pre_dispatch='2*n_jobs', refit=True, return_train_score=False,

## scoring=make_scorer(recall), verbose=0)

o Create a plot of the K parameter against the average recall score
found in the cross validation grid search

import pandas as pd
output = pd.DataFrame(clf.cv_results_) [['param_model__n_neighbors', 'mean_test_score']]

import seaborn as sns

import matplotlib.pyplot as plt

plt.figure()

sns.lineplot(x='param_model__n_neighbors', y='mean_test_score', data=output)
plt.show()

e What region of K looks like it will give the best value?
## for me it is between 1 and 20
e Re-run your grid search across that region

clf = GridSearchCV(model, param_grid={
'model__n_neighbors': list(range(l, 21))

}, cv=10, iid=False, return_train_score=False,
scoring=rec)

clf . fit(X_train, y_train)

## GridSearchCV(cv=10, error_score='raise-deprecating',
## estimator=Pipeline (memory=None,
#Hit steps=[('pre',
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## StandardScaler (copy=True,

## with_mean=True,

#it with_std=True)),

#t ('model"’,

#i# KNeighborsClassifier(algorithm="'auto',
## leaf_size=30,

#i metric='minkowski',
# metric_params=None,
# n_jobs=None,

## n_neighbors=5, p=2,
## weights='uniform'))],
#it verbose=False),

## iid=False, n_jobs=None,

#t param_grid={'model__n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
## 11, 12, 13, 14, 15, 16, 17, 18,
## 19, 201},

## pre_dispatch='2*n_jobs', refit=True, return_train_score=False,

## scoring=make_scorer(recall), verbose=0)

e What is the best parameter choice and the corresponding recall
score?

clf .best_params_

## {'model__n_neighbors': 4}

clf.best_score_

## 0.9480519480519481

o Is this better than the Logistic regression in the notes?

## for me it is worse

Other techniques

e Try the other classification algorithms that we explored, can you
find any that perform better?

Response Optimisation

In this question we aim to use machine learning as a route to optimis-
ing a response. In particular, the data we have at hand are mixtures of
concrete together with there measured compressive strength. We want
to use the available data to propose new formulations of concrete that
might be better than those used in the experiment.

The data can be loaded as



import jrpyml

concrete = jrpyml.datasets.mixtures.load_data()

e This isn’t a traditional experimental design set up, there are some
mixture formulations that have repeated measures. A sensible

thing to do in situations like this is to average over the repeated

responses.

concrete = concrete.groupby ([

item for item in concrete.columns if item != 'CompressiveStrength'
1) .agg{
'CompressiveStrength': 'mean'

}) .reset_index()

e Try any number of models aiming to find one that gives good pre-
dictive performance

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import mean_squared_error, make_scorer, r2_score
from sklearn.model_selection import cross_validate

import pandas as pd

model = RandomForestRegressor(n_estimators=1000)
y_train = concrete['CompressiveStrength']
X_train = concrete.drop(['CompressiveStrength'], axis=1).values

model.fit(X_train, y_train)

## RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,

## max_features='auto', max_leaf_nodes=None,

## min_impurity_decrease=0.0, min_impurity_split=None,
## min_samples_leaf=1, min_samples_split=2,

## min_weight_fraction_leaf=0.0, n_estimators=1000,

## n_jobs=None, oob_score=False, random_state=None,

## verbose=0, warm_start=False)

score_fn = make_scorer (mean_squared_error)
scores = cross_validate(model, X_train, y_train,
scoring = {

'
1,
cv = 10)
pd.DataFrame (scores) .mean()

mse': score_fn,

## fit_time 2.733632
## score_time 0.047337
## test_mse 51.957189

## dtype: float64
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Once you have found a model you are happy with, we can aim

to use it to optimise mixtures of concrete at different ages. This
optimisation problem also has some constraints, namely that the
sum of all components must be equal to 1 (as we have proportions
of a mixture). Further no input can be less than 0 or greater than
1. One way to impose these constraints is to define an objective
function in terms of 6 of the mixture components and infer the
final one. Such an objective function might be defined as below.
We return the negative model prediction here as out optimisation
routine will look to minimise the function.

import numpy as np

def obj(x, age=28):

# add some constraints, # index 7 s age
# sum of components excluding age must be 1

# there are 7 components in total

if np.any(x < 0) | np.any(x > 1):

return 1e50

X = np.append(x, [1-x.sum(), agel)

return -1*model.predict(x.reshape(1l,-1))

Given an objective function to minimize, scipy has a number of
routines to do so. We try to minimize the function from a number
of random start points, the aim being to have a better chance at
finding a global minimum.

from scipy.optimize import minimize

import random

##

start_idx = [random.randint(0,X_train.shape[0]) for _ in range(20)]

20 random rows of data to start from
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outputs = [minimize(obj, X_train[i,:-2], method = 'Nelder-Mead') for i in start_idx]

##
##

np.

##
##

##
##
##

Exztract the results of the objective function
once the optimisation routine completes.

array([o.fun.flatten() [0] for o in outputs])

For a given output we might also extract the input array

(The mizture of concrete in our case)

array([-58.76490667, -61.99193 , —56.482865 , -73.22655333,
-65.449085 , -53.63851 , —52.24439333, -64.51475833,
-39.63216 , -47.87852 , -70.04374333, -63.82833333,
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## -59.34348 , —44.15162 , —34.96689 , —59.51925 ,
## -63.42071833, -60.82886833, -31.55549 , —67.39775 1)

outputs[0] .x

## array([0.1197094 , 0.00173545, 0.05125073, 0.03570615, 0.00234326,
## 0.48493721])



