
Practical 4
Jumping Rivers

For our clustering example we will explore some data on credit card
usage behaviour. This sort of data might be used to develop a cus-
tomer segmentation in order to assist with a marketing strategy.

The data can be described with the following variables:

• CUST_ID : Identification of Credit Card holder (Categorical)
• BALANCE : Balance amount left in their account to make pur-

chases
• BALANCE_FREQUENCY : How frequently the Balance is up-

dated, score between 0 and 1 (1 = frequently updated, 0 = not
frequently updated)

• PURCHASES : Amount of purchases made from account
• ONEOFF_PURCHASES : Maximum purchase amount done in

one-go
• INSTALLMENTS_PURCHASES : Amount of purchase done in

installment
• CASH_ADVANCE : Cash in advance given by the user
• PURCHASES_FREQUENCY : How frequently the Purchases are

being made, score between 0 and 1 (1 = frequently purchased, 0 =
not frequently purchased)

• ONEOFF_PURCHASES_FREQUENCY : How frequently Pur-
chases are happening in one-go (1 = frequently purchased, 0 = not
frequently purchased)

• PURCHASES_INSTALLMENTS_FREQUENCY : How frequently
purchases in installments are being done (1 = frequently done, 0 =
not frequently done)

• CASH_ADVANCE_FREQUENCY : How frequently the cash in
advance being paid

• CASH_ADVANCE_TRX : Number of Transactions made with
“Cash in Advanced”

• PURCHASES_TRX : Numbe of purchase transactions made
CREDIT_LIMIT : Limit of Credit Card for user

• PAYMENTS : Amount of Payment done by user
• MINIMUM_PAYMENTS : Minimum amount of payments made

by user
• PRC_FULL_PAYMENT : Percent of full payment paid by user
• TENURE : Tenure of credit card service for user

It can be loaded from the package as follows

import jrpyml
ccdata = jrpyml.datasets.ccdata.load_data()



practical 4 2

This data is a real sample so is a little messy, for example we have a
number of missing values. The easiest way to deal with this for now is
to remove them, however we could in theory deal with this with some
form of imputation.

• Remove the missing values from the data

• Fit KMeans clustering to the data across a range of values to pro-
duce an elbow plot. How many cluster do you think are apparent
here? Don’t forget to scale your data appropriately first.

• Add the new cluster labels into the data set as a variable named
cluster.

• Now that we have different clusters we might look to try to un-
derstand the customer segments, below is a definition of a function
which will let you explore individual variables across the clusters.

import seaborn as sns

plot_data = ccdata.drop('CUST_ID', axis=1)

def examine(plot_data, column):
grid = sns.FacetGrid(plot_data, col='cluster')
grid.map(sns.distplot, column)
plt.show()

examine(plot_data, 'CREDIT_LIMIT')

• It is possible that some outliers make understanding the clusters
more difficult. We haven’t really discussed outlier detection during
the material but a LocalOutlierFactor measures deviation of a
given sample with respect to its surrounding neighbourhood. We
might trim outliers measured this way with the following code.

from sklearn.neighbors import LocalOutlierFactor
outlier = LocalOutlierFactor()

labels = outlier.fit_predict(ccdata_scaled)

ccdata_trimmed = ccdata_scaled[labels == 1]

• Does this changes anything about your cluster analysis?


