#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 11 11:15:50 2022 @author: tanu """ #%% del(t3_res) t3_res = MultClassPipeSKF(input_df = numerical_features_df , y_targetF = target1 , var_type = 'numerical' , skf_splits = 10) pp.pprint(t3_res) #print(t3_res) #%% Manually: mean for each model, each metric model_name = 'Logistic Regression' model_name = 'Naive Bayes' model_name = 'K-Nearest Neighbors' model_name = 'SVM' #%% model_metric = 'F1_score' log_reg_f1 = [] for key in t3_res[model_name]: log_reg_f1.append(t3_res[model_name][key][model_metric]) log_reg_f1M = mean(log_reg_f1) print('key:', key, model_metric, ':', log_reg_f1) print(log_reg_f1M) log_reg_f1df = pd.DataFrame({model_name: [log_reg_f1M]}, index = [model_metric]) log_reg_f1df #%% model_metric = 'MCC' log_reg_mcc = [] for key in t3_res[model_name]: log_reg_mcc.append(t3_res[model_name][key][model_metric]) log_reg_mccM = mean(log_reg_mcc) print('key:', key, model_metric, ':', log_reg_mcc) print(log_reg_mccM) log_reg_mccdf = pd.DataFrame({model_name: [log_reg_mccM]}, index = [model_metric]) log_reg_mccdf #%% model_metric = 'Precision' log_reg_pres = [] for key in t3_res[model_name]: log_reg_pres.append(t3_res[model_name][key][model_metric]) log_reg_presM = mean(log_reg_pres) print('key:', key, model_metric, ':', log_reg_pres) print(log_reg_presM) log_reg_presdf = pd.DataFrame({model_name: [log_reg_presM]}, index = [model_metric]) log_reg_presdf #%% model_metric = 'Recall' log_reg_recall = [] for key in t3_res[model_name]: log_reg_recall.append(t3_res[model_name][key][model_metric]) log_reg_recallM = mean(log_reg_recall) print('key:', key, model_metric, ':', log_reg_recall) print(log_reg_recallM) log_reg_recalldf = pd.DataFrame({model_name: [log_reg_recallM]}, index = [model_metric]) log_reg_recalldf #%% model_metric = 'Accuracy' log_reg_accu = [] for key in t3_res[model_name]: log_reg_accu.append(t3_res[model_name][key][model_metric]) log_reg_accuM = mean(log_reg_accu) print('key:', key, model_metric, ':', log_reg_accu) print(log_reg_accuM) log_reg_accudf = pd.DataFrame({model_name: [log_reg_accuM]}, index = [model_metric]) log_reg_accudf #%% model_metric = 'ROC_AUC' log_reg_roc_auc = [] for key in t3_res[model_name]: log_reg_roc_auc.append(t3_res[model_name][key][model_metric]) log_reg_roc_aucM = mean(log_reg_roc_auc) print('key:', key, model_metric, ':', log_reg_roc_auc) print(log_reg_roc_aucM) log_reg_roc_aucdf = pd.DataFrame({model_name: [log_reg_roc_aucM]}, index = [model_metric]) log_reg_roc_aucdf