
Solutions 4
Jumping Rivers

Predict a person based on accelerometer data from walking

We have accelerometer data on 15 individuals who all walked for a
period of time. Each observation is a set of values from the x,y and
z axis of an accelerometer in 5 seconds sampled at a frequency of
52Hz. One sample is 260 observations. We have between 300-600
observations on each individual

import jrpytensorflow

walking = jrpytensorflow.datasets.load_walking()

The following code will produce a visualisation of one sample

import matplotlib.pyplot as plt
import numpy as np

sub = walking[walking['sample'] == 400]
sub['time'] = np.arange(260)
fig, (ax1,ax2,ax3) = plt.subplots(1,3, figsize = (18,10))
sub.plot(x = 'time', y = 'acc_x', ax = ax1)
sub.plot(x = 'time', y = 'acc_y', ax = ax2)
sub.plot(x = 'time', y = 'acc_z', ax = ax3)
plt.show()

0 50 100 150 200 250
time

3

2

1

0

1

2

3

acc_x

0 50 100 150 200 250
time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

acc_y

0 50 100 150 200 250
time

2

1

0

1

2

acc_z

At present this data is not in a particularly convenient structure
for training my model. The following code will create the (n,260,3) (n
observations of 260 inputs for 3 channels) input shape and class labels
as seperate array objects



solutions 4 2

dims = ['acc_x','acc_y','acc_z']
x = np.dstack([walking[[d]].values.reshape(-1,260) for d in dims])
y = walking['person'].values[::260] - 1

Each observation is a sequence of 260 values with 3 channels. This
is the sort of data structure where we would use a convolutional neural
network with 1d convolutions.

• Create a model structure that takes in the 260 input features for
each of 3 data channels and returns 15 output features (one for
each person). We will want a set of convolution and pooling layers
to begin with before having some linear layers to get to the final
output. The convolutions and pooling extract features from the 3
channels of sequences, the linear layers then map those features to
the final output.

import tensorflow as tf
def convModel():

model = tf.keras.models.Sequential([
tf.keras.layers.Conv1D(40, 30, strides=2,

activation='relu', input_shape=(260,3)),

tf.keras.layers.Conv1D(40, 10,
activation='relu'),

tf.keras.layers.MaxPooling1D(2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(100, activation='relu'),
tf.keras.layers.Dense(15, activation='sigmoid')

])
return model

• Partition your data into training and test sets and binarize the
labels (Optional: partition data into a validation set as well)

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
X_train, X_test, y_train, y_test = train_test_split(x,y, shuffle = True, test_size = 0.2)

prep = LabelBinarizer()
y_train_bin = prep.fit_transform(y_train)
y_test_bin = prep.transform(y_test)

• Compile and train your model

model = convModel()
model.compile(optimizer='Adam',



solutions 4 3

loss='categorical_crossentropy',
metrics=['accuracy'])

hist = model.fit(X_train, y_train_bin, epochs=5,
validation_data = [X_test, y_test_bin])

• Using the .history object, can you plot how the loss and accuracy
changes over the training time?

import pandas as pd
acc = pd.Series(hist.history['accuracy'])
acc.plot()
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.show()

• what is the loss and accuracy in your test set?

loss, acc = model.evaluate(X_test, y_test_bin, verbose=2)

• Try to view the model architecture in TensorBoard

%load_ext tensorboard
from tensorflow import keras
tensorBoardCallback = keras.callbacks.TensorBoard(

log_dir = "logs/fit/",
histogram_freq = 1)

model = convModel()

model.compile(optimizer='Adam',
loss='categorical_crossentropy',
metrics=['accuracy'])

model.fit(X_train, y_train_bin, epochs=5,
validation_data=(X_test, y_test_bin),
callbacks = [tensorBoardCallback])

For me this gives 95% plus accuracy on classifying a person purely
on the accelerometer data while walking. Pretty neat!


