diff --git a/testing_lazypredict_p1.py b/testing_lazypredict_p1.py new file mode 100644 index 0000000..6668a55 --- /dev/null +++ b/testing_lazypredict_p1.py @@ -0,0 +1,39 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Mon Mar 14 10:46:44 2022 + +@author: tanu +""" +# Link: https://laptrinhx.com/how-to-run-30-machine-learning-models-with-2-lines-of-code-1521663246/ +import pyforest +import warnings +warnings.filterwarnings("ignore") +from sklearn import metrics +from sklearn.metrics import accuracy_score +import lazypredict +from lazypredict.Supervised import LazyClassifier + +#%% +target = target1 +#target = target3 +X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df, + target, + test_size = 0.33, + random_state = 42) + + +#%% +clf = LazyClassifier(verbose=0,ignore_warnings=True) +modelsN, predictionsN = clf.fit(X_trainN, X_testN, y_trainN, y_testN) +mm_lpN = modelsN + +#%% +# DOESN't work as need to incorporate pipeline(one hot encoder) +models, predictions = clf.fit(X_train, X_test, y_train, y_test) +mm_lp = models + +model1 = Pipeline(steps = [('preprocess', MinMaxScaler()) + , ('multiModels', clf) ]) + +models, predictions = model1.fit(X_trainN, X_testN, y_trainN, y_testN)