LSHTM_analysis/foldx/runFoldx.py

333 lines
12 KiB
Python
Executable file

#!/usr/bin/env python3
import subprocess
import os
import numpy as np
import pandas as pd
from contextlib import suppress
from pathlib import Path
import re
import csv
import argparse
#https://realpython.com/python-pathlib/
# FIXME
#strong dependency of file and path names
#cannot pass file with path. Need to pass them separately
#assumptions made for dir struc as standard
#datadir + drug + input
#=======================================================================
#%% specify input and curr dir
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/foldx/')
os.getcwd()
#=======================================================================
#%% command line args
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = None)
arg_parser.add_argument('-g', '--gene', help = 'gene name (case sensitive)', default = None)
arg_parser.add_argument('--datadir', help = 'Data Directory. By default, it assmumes homedir + git/Data')
arg_parser.add_argument('-i', '--input_dir', help = 'Input dir containing pdb files. By default, it assmumes homedir + <drug> + input')
arg_parser.add_argument('-o', '--output_dir', help = 'Output dir for results. By default, it assmes homedir + <drug> + output')
arg_parser.add_argument('-pdb', '--pdb_file', help = 'PDB File to process. By default, it assmumes a file called <gene>_complex.pdb in input_dir')
arg_parser.add_argument('-m', '--mutation_file', help = 'Mutation list. By default, assumes a file called <gene>_snps.csv exists')
arg_parser.add_argument('-c1', '--chain1', help = 'Chain1 ID', default = 'A') # case sensitive
arg_parser.add_argument('-c2', '--chain2', help = 'Chain2 ID', default = 'B') # case sensitive
args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
#drug = 'pyrazinamide'
#gene = 'pncA'
#gene_match = gene + '_p.'
#%%=====================================================================
# Command line options
drug = args.drug
gene = args.gene
datadir = args.datadir
indir = args.input_dir
outdir = args.output_dir
mut_filename = args.mutation_file
chainA = args.chain1
chainB = args.chain2
pdb_filename = args.pdb_file
# os.path.splitext will fail interestingly with file.pdb.txt.zip
#pdb_name = os.path.splitext(pdb_file)[0]
# Just the filename, thanks
#pdb_name = Path(in_filename_pdb).stem
#==============
# directories
#==============
if not datadir:
datadir = homedir + '/' + 'git/Data'
if not indir:
indir = datadir + '/' + drug + '/input'
if not outdir:
outdir = datadir + '/' + drug + '/output'
# FIXME: this is a temporary directory and should be correctly handled
process_dir = datadir + '/' + drug +'/' + 'processing'
#os.mkdir(process_dir)
#=======
# input
#=======
# FIXME
if pdb_filename:
pdb_name = Path(pdb_filename).stem
else:
pdb_filename = gene.lower() + '_complex.pdb'
pdb_name = Path(pdb_filename).stem
infile_pdb = indir + '/' + pdb_filename
actual_pdb_filename = Path(infile_pdb).name
if mut_filename:
mutation_file = mut_filename
else:
mutation_file = gene.lower() + '_mcsm_snps.csv'
infile_muts = outdir + '/' + mutation_file
#=======
# output
#=======
out_filename = gene.lower() + '_foldx.csv'
outfile_foldx = outdir + '/' + out_filename
print('Arguments being passed:'
, '\nDrug:', args.drug
, '\ngene:', args.gene
, '\ninput dir:', indir
, '\noutput dir:', outdir
, '\npdb file:', infile_pdb
, '\npdb name:', pdb_name
, '\nactual pdb name:', actual_pdb_filename
, '\nmutation file:', infile_muts
, '\nchain1:', args.chain1
, '\noutput file:', outfile_foldx
, '\n=============================================================')
#=======================================================================
def getInteractionEnergy(filename):
data = pd.read_csv(filename,sep = '\t')
return data['Interaction Energy'].loc[0]
def getInteractions(filename):
data = pd.read_csv(filename, index_col = 0, header = 0, sep = '\t')
contactList = getIndexes(data,1)
number = len(contactList)
return number
def formatMuts(mut_file,pdbname):
with open(mut_file) as csvfile:
readCSV = csv.reader(csvfile)
muts = []
for row in readCSV:
mut = row[0]
muts.append(mut)
mut_list = []
outfile = process_dir + '/individual_list_' + pdbname + '.txt'
with open(outfile, 'w') as output:
for m in muts:
print(m)
mut = m[:1] + chainA+ m[1:]
mut_list.append(mut)
mut = mut + ';'
print(mut)
output.write(mut)
output.write('\n')
return mut_list
def getIndexes(data, value):
colnames = data.columns.values
listOfPos = list()
result = data.isin([value])
result.columns = colnames
seriesdata = result.any()
columnNames = list(seriesdata[seriesdata==True].index)
for col in columnNames:
rows = list(result[col][result[col]==True].index)
for row in rows:
listOfPos.append((row,col))
return listOfPos
def loadFiles(df):
# load a text file in to np matrix
resultList = []
f = open(df,'r')
for line in f:
line = line.rstrip('\n')
aVals = line.split('\t')
fVals = list(map(np.float32, sVals))
resultList.append(fVals)
f.close()
return np.asarray(resultList, dtype=np.float32)
#=======================================================================
def main():
pdbname = pdb_name
comp = '' # for complex only
mut_filename = infile_muts #pnca_mcsm_snps.csv
mutlist = formatMuts(mut_filename, pdbname)
print(mutlist)
nmuts = len(mutlist)
print(nmuts)
print(mutlist)
print('start')
#subprocess.check_output(['bash','repairPDB.sh', pdbname, process_dir])
subprocess.check_output(['bash','repairPDB.sh', indir, actual_pdb_filename, process_dir])
print('end')
output = subprocess.check_output(['bash', 'runfoldx.sh', pdbname, process_dir])
for n in range(1,nmuts+1):
print(n)
with suppress(Exception):
subprocess.check_output(['bash', 'runPrintNetworks.sh', pdbname, str(n), process_dir])
for n in range(1,nmuts+1):
print(n)
with suppress(Exception):
subprocess.check_output(['bash', 'mutrenamefiles.sh', pdbname, str(n), process_dir])
out = subprocess.check_output(['bash','renamefiles.sh', pdbname, process_dir])
if comp=='y':
chain1=chainA
chain2=chainB
with suppress(Exception):
subprocess.check_output(['bash','runcomplex.sh', pdbname, chain1, chain2, process_dir])
for n in range(1,nmuts+1):
with suppress(Exception):
subprocess.check_output(['bash','mutruncomplex.sh', pdbname, chain1, chain2, str(n), process_dir])
interactions = ['Distances','Electro_RR','Electro_MM','Electro_SM','Electro_SS','Disulfide_RR','Disulfide_MM','Disulfide_SM','Disulfide_SS',
'Hbonds_RR','Hbonds_MM','Hbonds_SM','Hbonds_SS','Partcov_RR','Partcov_MM','Partcov_SM','Partcov_SS','VdWClashes_RR','VdWClashes_MM',
'VdWClashes_SM','VdWClashes_SS','Volumetric_RR','Volumetric_MM','Volumetric_SM','Volumetric_SS']
dGdatafile = process_dir + '/Dif_' + pdbname + '_Repair.txt'
dGdata = pd.read_csv(dGdatafile, sep = '\t')
ddG=[]
print('ddG')
print(len(dGdata))
for i in range(0,len(dGdata)):
ddG.append(dGdata['total energy'].loc[i])
nint = len(interactions)
wt_int = []
for i in interactions:
filename = process_dir + '/Matrix_' + i + '_'+ pdbname + '_Repair_PN.txt'
wt_int.append(getInteractions(filename))
print('wt')
print(wt_int)
ntotal = nint+1
print(ntotal)
print(nmuts)
data = np.empty((ntotal,nmuts))
data[0] = ddG
print(data)
for i in range(0,len(interactions)):
d=[]
p=0
for n in range(1, nmuts+1):
print(i)
filename = process_dir + '/Matrix_' + interactions[i] + '_' + pdbname + '_Repair_' + str(n) + '_PN.txt'
mut = getInteractions(filename)
diff = wt_int[i] - mut
print(diff)
print(wt_int[i])
print(mut)
d.append(diff)
print(d)
data[i+1] = d
interactions = ['ddG', 'Distances','Electro_RR','Electro_MM','Electro_SM','Electro_SS','Disulfide_RR','Disulfide_MM','Disulfide_SM','Disulfide_SS', 'Hbonds_RR','Hbonds_MM','Hbonds_SM','Hbonds_SS','Partcov_RR','Partcov_MM','Partcov_SM','Partcov_SS','VdWClashes_RR','VdWClashes_MM',
'VdWClashes_SM','VdWClashes_SS','Volumetric_RR','Volumetric_MM','Volumetric_SM','Volumetric_SS']
print(interactions)
IE = []
if comp=='y':
wtfilename = process_dir + '/Summary_' + pdbname + '_Repair_AC.txt'
wtE = getInteractionEnergy(wtfilename)
print(wtE)
for n in range(1,nmuts+1):
print(n)
filename = process_dir + '/Summary_' + pdbname + '_Repair_' + str(n) + '_AC.txt'
mutE = getInteractionEnergy(filename)
print(mutE)
diff = wtE - mutE
print(diff)
IE.append(diff)
print(IE)
IEresults = pd.DataFrame(IE,columns = ['Interaction Energy'], index = mutlist)
IEfilename = 'foldx_complexresults_'+pdbname+'.csv'
IEresults.to_csv(IEfilename)
print(len(IE))
data = np.append(data,[IE], axis = 0)
print(data)
interactions = ['ddG','Distances','Electro_RR','Electro_MM','Electro_SM','Electro_SS','Disulfide_RR','Disulfide_MM','Disulfide_SM','Disulfide_SS', 'Hbonds_RR','Hbonds_MM','Hbonds_SM','Hbonds_SS','Partcov_RR','Partcov_MM','Partcov_SM','Partcov_SS','VdWClashes_RR','VdWClashes_MM',
'VdWClashes_SM','VdWClashes_SS','Volumetric_RR','Volumetric_MM','Volumetric_SM','Volumetric_SS','Interaction Energy']
mut_file = process_dir + '/individual_list_' + pdbname + '.txt'
with open(mut_file) as csvfile:
readCSV = csv.reader(csvfile)
mutlist = []
for row in readCSV:
mut = row[0]
mutlist.append(mut)
print(mutlist)
print(len(mutlist))
print(data)
results = pd.DataFrame(data, columns = mutlist, index = interactions)
results.append(ddG)
#print(results.head())
# my style formatted results
results2 = results.T # transpose df
results2.index.name = 'mutationinformation' # assign name to index
results2 = results2.reset_index() # turn it into a columns
results2['mutationinformation'] = results2['mutationinformation'].replace({r'([A-Z]{1})[A-Z]{1}([0-9]+[A-Z]{1});' : r'\1 \2'}, regex = True) # capture mcsm style muts (i.e not the chain id)
results2['mutationinformation'] = results2['mutationinformation'].str.replace(' ', '') # remove empty space
results2.rename(columns = {'Distances': 'Contacts'}, inplace = True)
# lower case columns
results2.columns = results2.columns.str.lower()
print('Writing file in the format below:\n'
, results2.head()
, '\nNo. of rows:', len(results2)
, '\nNo. of cols:', len(results2.columns))
outputfilename = outfile_foldx
#outputfilename = 'foldx_results_' + pdbname + '.csv'
#results.to_csv(outputfilename)
results2.to_csv(outputfilename, index = False)
if __name__ == '__main__':
main()