216 lines
6.6 KiB
R
216 lines
6.6 KiB
R
getwd()
|
|
setwd('~/git/LSHTM_analysis/scripts/plotting')
|
|
getwd()
|
|
|
|
#########################################################
|
|
# TASK:
|
|
|
|
#########################################################
|
|
|
|
|
|
########################################################################
|
|
# Installing and loading required packages and functions #
|
|
########################################################################
|
|
#source("Header_TT.R")
|
|
#https://stackoverflow.com/questions/38851592/r-append-column-in-a-dataframe-with-frequency-count-based-on-two-columns
|
|
|
|
########################################################################
|
|
# Read file: call script for combining df for PS #
|
|
########################################################################
|
|
#source("../combining_two_df.R")
|
|
#?????????????
|
|
|
|
#########################################################
|
|
#%% variable assignment: input and output paths & filenames
|
|
drug = 'pyrazinamide'
|
|
gene = 'pncA'
|
|
gene_match = paste0(gene,'_p.')
|
|
cat(gene_match)
|
|
|
|
#=============
|
|
# directories
|
|
#=============
|
|
datadir = paste0('~/git/Data')
|
|
indir = paste0(datadir, '/', drug, '/input')
|
|
outdir = paste0('~/git/Data', '/', drug, '/output')
|
|
|
|
#======
|
|
# input
|
|
#======
|
|
#in_filename = 'mcsm_complex1_normalised.csv'
|
|
in_filename_params = paste0(tolower(gene), '_all_params.csv')
|
|
infile_params = paste0(outdir, '/', in_filename_params)
|
|
cat(paste0('Input file 1:', infile_params) )
|
|
|
|
#=======
|
|
# output
|
|
#=======
|
|
# plot 1
|
|
basic_bp_duet = 'basic_barplot_PS.svg'
|
|
plot_basic_bp_duet = paste0(outdir, '/plots/', basic_bp_duet)
|
|
|
|
# plot 2
|
|
pos_count_duet = 'position_count_PS.svg'
|
|
plot_pos_count_duet = paste0(outdir, '/plots/', pos_count_duet)
|
|
|
|
#%%===============================================================
|
|
###########################
|
|
# Read file: struct params
|
|
###########################
|
|
cat('Reading struct params including mcsm:', in_filename_params)
|
|
|
|
my_df = read.csv(infile_params
|
|
#, stringsAsFactors = F
|
|
, header = T)
|
|
|
|
cat('Input dimensions:', dim(my_df))
|
|
|
|
# clear variables
|
|
rm(in_filename_params, infile_params)
|
|
|
|
# quick checks
|
|
colnames(my_df)
|
|
str(my_df)
|
|
|
|
# check for duplicate mutations
|
|
if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){
|
|
cat(paste0('CAUTION:', ' Duplicate mutations identified'
|
|
, '\nExtracting these...'))
|
|
dup_muts = my_df[duplicated(my_df$mutationinformation),]
|
|
dup_muts_nu = length(unique(dup_muts$mutationinformation))
|
|
cat(paste0('\nDim of duplicate mutation df:', nrow(dup_muts)
|
|
, '\nNo. of unique duplicate mutations:', dup_muts_nu
|
|
, '\n\nExtracting df with unique mutations only'))
|
|
my_df_u = my_df[!duplicated(my_df$mutationinformation),]
|
|
}else{
|
|
cat(paste0('No duplicate mutations detected'))
|
|
my_df_u = my_df
|
|
}
|
|
|
|
upos = unique(my_df_u$position)
|
|
cat('Dim of clean df:'); cat(dim(my_df_u))
|
|
cat('\nNo. of unique mutational positions:'); cat(length(upos))
|
|
|
|
########################################################################
|
|
# end of data extraction and cleaning for plots #
|
|
########################################################################
|
|
|
|
#================
|
|
# Data for plots
|
|
#================
|
|
# REASSIGNMENT as necessary
|
|
df = my_df_u
|
|
rm(my_df)
|
|
|
|
# sanity checks
|
|
str(df)
|
|
library(ggplot2)
|
|
#%%=======================================================================
|
|
#****************
|
|
# Plot 1:Count of stabilising and destabilsing muts
|
|
#****************
|
|
#svg('basic_barplots_PS.svg')
|
|
svg(plot_basic_bp_duet)
|
|
print(paste0('plot filename:', basic_bp_duet))
|
|
|
|
my_ats = 25 # axis text size
|
|
my_als = 22 # axis label size
|
|
|
|
theme_set(theme_grey())
|
|
|
|
# uncomment as necessary for either directly outputting results or
|
|
# printing on the screen
|
|
g = ggplot(df, aes(x = duet_outcome))
|
|
prinfFile = g + geom_bar(aes(fill = duet_outcome)
|
|
, show.legend = TRUE) +
|
|
geom_label(stat = "count"
|
|
, aes(label = ..count..)
|
|
, color = "black"
|
|
, show.legend = FALSE
|
|
, size = 10) +
|
|
theme(axis.text.x = element_blank()
|
|
, axis.title.x = element_blank()
|
|
, axis.title.y = element_text(size=my_als)
|
|
, axis.text.y = element_text(size = my_ats)
|
|
, legend.position = c(0.73,0.8)
|
|
, legend.text = element_text(size=my_als-2)
|
|
, legend.title = element_text(size=my_als)
|
|
, plot.title = element_blank()) +
|
|
labs(title = ""
|
|
, y = "Number of SNPs"
|
|
#, fill='DUET Outcome'
|
|
) +
|
|
scale_fill_discrete(name = "DUET Outcome"
|
|
, labels = c("Destabilising", "Stabilising"))
|
|
|
|
print(prinfFile)
|
|
dev.off()
|
|
#%%=======================================================================
|
|
#****************
|
|
# Plot 2: frequency of positions
|
|
#****************
|
|
library(data.table)
|
|
#setDT(df)[, .(pos_count := .N), by = .(position)]
|
|
setDT(df)[, pos_count := .N, by = .(position)]
|
|
|
|
# this is cummulative
|
|
table(df$pos_count)
|
|
|
|
# use group by on this
|
|
library(dplyr)
|
|
|
|
snpsBYpos_df <- df %>%
|
|
group_by(position) %>%
|
|
summarize(snpsBYpos = mean(pos_count))
|
|
|
|
table(snpsBYpos_df$snpsBYpos)
|
|
|
|
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
# FIXME, get this mutation_info, perhaps useful!
|
|
foo = select(df, mutationinformation
|
|
, wild_pos
|
|
, wild_type
|
|
, mutant_type
|
|
#, mutation_info # comes from meta data, notused yet
|
|
, position
|
|
, pos_count)
|
|
|
|
#write.csv(foo, "/pos_count_freq.csv")
|
|
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
#svg('position_count_PS.svg')
|
|
svg(plot_pos_count_duet)
|
|
print(paste0('plot filename:', plot_pos_count_duet))
|
|
|
|
my_ats = 25 # axis text size
|
|
my_als = 22 # axis label size
|
|
|
|
my_x = sort(unique(snpsBYpos_df$snpsBYpos))
|
|
|
|
|
|
g = ggplot(snpsBYpos_df, aes(x = snpsBYpos))
|
|
prinfFile = g + geom_bar(aes (alpha = 0.5)
|
|
, show.legend = FALSE) +
|
|
scale_x_continuous(breaks = unique(snpsBYpos_df$snpsBYpos)) +
|
|
#scale_x_continuous(breaks = my_x) +
|
|
geom_label(stat = "count", aes(label = ..count..)
|
|
, color = "black"
|
|
, size = 10) +
|
|
theme(axis.text.x = element_text(size = my_ats
|
|
, angle = 0)
|
|
, axis.text.y = element_text(size = my_ats
|
|
, angle = 0
|
|
, hjust = 1)
|
|
, axis.title.x = element_text(size = my_als)
|
|
, axis.title.y = element_text(size = my_als)
|
|
, plot.title = element_blank()) +
|
|
|
|
labs(x = "Number of SNPs"
|
|
, y = "Number of Sites")
|
|
|
|
print(prinfFile)
|
|
dev.off()
|
|
########################################################################
|
|
# end of DUET barplots
|
|
########################################################################
|
|
|