LSHTM_analysis/scripts/plotting/barplots_subcolours_aa_LIG.R

265 lines
7.9 KiB
R
Executable file

#!/usr/bin/env Rscript
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
#########################################################
# TASK: output barplot by position with each bar coloured by
# its stability value and active site positions indicated
# according to colour specified in "subcols_axis_PS.R"
#########################################################
#=======================================================================
############################################################
# 1: Installing and loading required packages and functions
############################################################
#source("Header_TT.R")
library(ggplot2)
library(data.table)
source("barplot_colour_function.R")
#source("subcols_axis.R")
source("subcols_axis.R")
# should return the following dfs, directories and variables
# mut_pos_cols
# mut_pos_cols_lig
# my_df_cols
# my_df_u_cols
# my_df_u_lig_cols
# dup_muts_cols
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nLength of upos:", length(upos)
, "\nAngstrom symbol:", angstroms_symbol))
# clear excess variable
rm(dup_muts_cols, mut_pos_cols, my_df_cols, my_df_u_cols, upos)
#=======================================================================
# !!! very important!!!!
#================
# Inspecting mut_pos_cols
# position numbers and colours and assigning axis colours based on lab_fg
# of the correct df
# open file from desktop ("sample_axis_cols") for cross checking
#================
if ( nrow(mut_pos_cols_lig) == length(unique(my_df_u_cols_lig$position)) ){
print("PASS: lengths checked, assigning axis colours")
my_axis_colours = mut_pos_cols_lig$lab_fg
cat("length of axis colours:", length(my_axis_colours)
, "\nwhich corresponds to the number of positions on the x-axis of the plot")
}else{
print("FAIL:lengths mismatch, could not assign axis colours")
quit()
}
# further sanity checks
table(mut_pos_cols_lig$lab_bg)
check_lab_bg = sum( table(mut_pos_cols_lig$lab_bg) ) == nrow(mut_pos_cols_lig) # should be True
check_lab_bg
table(mut_pos_cols_lig$lab_bg2)
check_lab_bg2 = sum( table(mut_pos_cols_lig$lab_bg2) ) == nrow(mut_pos_cols_lig) # should be True
check_lab_bg2
table(mut_pos_cols_lig$lab_fg)
check_lab_fg = sum( table(mut_pos_cols_lig$lab_fg) ) == nrow(mut_pos_cols_lig) # should be True
check_lab_fg
# sanity checks:
if (check_lab_bg && check_lab_bg2 && check_lab_fg) {
print("PASS: No. of assigned colours match length")
}else{
print("FAIL: length of assigned colours mismatch")
quit()
}
#=======================================================================
#=======
# output
#=======
# plot name and location
print(paste0("plot will be in:", plotdir))
bp_aa_subcols_ligand = "barplot_acoloured_LIG.svg"
plot_bp_aa_subcols_ligand = paste0(plotdir, "/", bp_aa_subcols_ligand)
#=======================================================================
#================
# Data for plots
#================
# REASSIGNMENT as necessary
df = my_df_u_cols_lig
cat("ligand df dim:", dim(df))
# sanity checks
str(df)
# sanity check
df[df$position == "49",]
df[df$position == "13",]
df[df$position == "103",]
###########################
# Plot: Ligand affinity
###########################
#==========================
# Barplot with scores (unordered)
# corresponds to ligand_outcome
# Stacked Barplot with colours: ligand_outcome @ position coloured by
# stability scores. This is a barplot where each bar corresponds
# to a SNP and is coloured by its corresponding ligand stability value.
# Normalised values (range between -1 and 1 ) to aid visualisation
# NOTE: since barplot plots discrete values, colour = score, so number of
# colours will be equal to the no. of unique normalised scores
# rather than a continuous scale
# will require generating the colour scale separately.
#============================
# sanity checks
upos = unique(df$position)
table(df$ligand_outcome)
table(df$ligand_outcome)
# add frequency of positions (from lib data.table)
setDT(df)[, pos_count := .N, by = .(position)]
# this is cummulative
table(df$pos_count)
# use group by on this
library(dplyr)
snpsBYpos_df <- df %>%
group_by(position) %>%
summarize(snpsBYpos = mean(pos_count))
table(snpsBYpos_df$snpsBYpos)
snp_count = sort(unique(snpsBYpos_df$snpsBYpos))
# sanity checks
# should be a factor
if (is.factor(df$ligand_outcome)){
print("ligand_outcome is factor")
}else{
print("converting ligand_outcome to factor")
df$ligand_outcome = as.factor(df$ligand_outcome)
}
is.factor(df$ligand_outcome)
table(df$ligand_outcome)
# may not be -1 and 1 since these are filtered within 10A
min(df$affinity_scaled)
max(df$affinity_scaled)
# sanity checks
# very important!!!!
tapply(df$affinity_scaled, df$ligand_outcome, min)
tapply(df$affinity_scaled, df$ligand_outcome, max)
# My colour FUNCTION: based on group and subgroup
# in my case;
# df = df
# group = ligand_outcome
# subgroup = normalised score i.e affinity_scaled
# check unique values in normalised data
u = unique(df$affinity_scaled)
cat("No. of unique values in normalised data:", length(u))
# Define group
# Create an extra column called group which contains the "gp name and score"
# so colours can be generated for each unique values in this column
my_grp = df$affinity_scaled
df$group <- paste0(df$ligand_outcome, "_", my_grp, sep = "")
# Call the function to create the palette based on the group defined above
colours <- ColourPalleteMulti(df, "ligand_outcome", "my_grp")
print(paste0("Colour palette generated for: ", length(colours), " colours"))
my_title = "Ligand affinity"
cat("No. of axis colours: ", length(my_axis_colours))
#========================
# plot with axis colours
#========================
class(df$lab_bg)
# define cartesian coord
my_xlim = length(unique(df$position)); my_xlim
# axis label size
my_xals = 18
my_yals = 18
# axes text size
my_xats = 14
my_yats = 18
#******************
# generate plot: with axis colours
#******************
print(paste0("plot name:", plot_bp_aa_subcols_ligand))
svg(plot_bp_aa_subcols_ligand, width = 26, height = 4)
g = ggplot(df, aes(factor(position, ordered = T)))
OutPlot_aa_LIG = g +
coord_cartesian(xlim = c(1, my_xlim)
#, ylim = c(0, 6)
, ylim = c(0, max(snp_count))
, clip = "off") +
geom_bar(aes(fill = group), colour = "grey") +
scale_fill_manual(values = colours
, guide = "none") +
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
, fill = df$lab_bg) +
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
, fill = df$lab_bg2) +
# Here it"s important to specify that your axis goes from 1 to max number of levels
theme(axis.text.x = element_text(size = my_xats
, angle = 90
, hjust = 1
, vjust = 0.4
, colour = my_axis_colours)
, axis.text.y = element_text(size = my_yats
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = my_xals
#, hjust = 1
, vjust = -0.4)
, axis.title.y = element_text(size = my_yals )
, axis.ticks.x = element_blank()) +
labs(title = ""
#title = my_title
, x = "Position"
, y = "Frequency")
print(OutPlot_aa_LIG)
dev.off()
#!!!!!!!!!!!!!!!!
#Warning message:
# Vectorized input to `element_text()` is not officially supported.
#Results may be unexpected or may change in future versions of ggplot2.
#!!!!!!!!!!!!!!!!!
# for sanity and good practice
#rm(df)