LSHTM_analysis/scripts/plotting/replaceBfactor_pdb_ppi2.R

277 lines
No EOL
7.8 KiB
R

#!/usr/bin/env Rscript
#########################################################
# TASK: Replace B-factors in the pdb file with the mean
# normalised stability values.
# read pdb file
# read mcsm mean stability value files
# extract the respective mean values and assign to the
# b-factor column within their respective pdbs
# generate some distribution plots for inspection
#########################################################
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
cat(c(getwd(),"\n"))
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
library(bio3d)
require("getopt", quietly = TRUE) # cmd parse arguments
#========================================================
#drug = "pyrazinamide"
#gene = "pncA"
# command line args
spec = matrix(c(
"drug" , "d", 1, "character",
"gene" , "g", 1, "character"
), byrow = TRUE, ncol = 4)
opt = getopt(spec)
drug = opt$drug
gene = opt$gene
if(is.null(drug)|is.null(gene)) {
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
}
#========================================================
gene_match = paste0(gene,"_p.")
cat(gene_match)
#=============
# directories
#=============
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots")
outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#======
# input
#======
in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
infile_pdb = paste0(indir, "/", in_filename_pdb)
cat(paste0("Input file:", infile_pdb) )
# mean ppi2
in_filename_mean_ppi2 = paste0(tolower(gene), "_mean_ppi2.csv")
infile_mean_ppi2 = paste0(outdir_plots, "/", in_filename_mean_ppi2)
cat(paste0("Input file:", infile_mean_ppi2) )
#=======
# output
#=======
#out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb")
out_filename_ppi2_mspdb = paste0(tolower(gene), "_complex_b_ppi2_ms.pdb")
outfile_ppi2_mspdb = paste0(outdir_plots, "/", out_filename_ppi2_mspdb)
print(paste0("Output file:", outfile_ppi2_mspdb))
#%%===============================================================
#NOTE: duet here refers to the ensemble stability values
###########################
# Read file: average stability values
# or mcsm_normalised file
###########################
my_df <- read.csv(infile_mean_ppi2, header = T)
str(my_df)
#############
# Read pdb
#############
# list of 8
my_pdb = read.pdb(infile_pdb
, maxlines = -1
, multi = FALSE
, rm.insert = FALSE
, rm.alt = TRUE
, ATOM.only = FALSE
, hex = FALSE
, verbose = TRUE)
# assign separately for duet and ligand
my_pdb_duet = my_pdb
#=========================================================
# Replacing B factor with mean stability scores
# within the respective dfs
#==========================================================
# extract atom list into a variable
# since in the list this corresponds to data frame, variable will be a df
#df_duet = my_pdb_duet[[1]]
df_duet= my_pdb_duet[['atom']]
# make a copy: required for downstream sanity checks
d2_duet = df_duet
# sanity checks: B factor
max(df_duet$b); min(df_duet$b)
#==================================================
# histograms and density plots for inspection
# 1: original B-factors
# 2: original mean stability values
# 3: replaced B-factors with mean stability values
#==================================================
# Set the margin on all sides
par(oma = c(3,2,3,0)
, mar = c(1,3,5,2)
#, mfrow = c(3,2)
#, mfrow = c(3,4))
, mfrow = c(3,2))
#=============
# Row 1 plots: original B-factors
# duet and affinity
#=============
hist(df_duet$b
, xlab = ""
, main = "Bfactor ppi2")
plot(density(df_duet$b)
, xlab = ""
, main = "Bfactor ppi2")
#=============
# Row 2 plots: original mean stability values
# duet and affinity
#=============
#hist(my_df$averaged_duet
hist(my_df$avg_ppi2_scaled
, xlab = ""
, main = "mean ppi2 values")
#plot(density(my_df$averaged_duet)
plot(density(my_df$avg_ppi2_scaled)
, xlab = ""
, main = "mean ppi2 values")
#==============
# Row 3 plots: replaced B-factors with mean stability values
# After actual replacement in the b factor column
#===============
################################################################
#=========
# step 0_P1: DONT RUN once you have double checked the matched output
#=========
# sanity check: match and assign to a separate column to double check
# colnames(my_df)
# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)]
#=========
# step 1_P1
#=========
# Be brave and replace in place now (don"t run sanity check)
# this makes all the B-factor values in the non-matched positions as NA
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
df_duet$b = my_df$avg_ppi2_scaled[match(df_duet$resno, my_df$position)]
#=========
# step 2_P1
#=========
# count NA in Bfactor
b_na_duet = sum(is.na(df_duet$b)) ; b_na_duet
# count number of 0"s in Bactor
sum(df_duet$b == 0)
# replace all NA in b factor with 0
na_rep = 2
df_duet$b[is.na(df_duet$b)] = na_rep
# # sanity check: should be 0 and True
# # duet and lig
# if ( (sum(df_duet$b == na_rep) == b_na_duet) && (sum(df_lig$b == na_rep) == b_na_lig) ) {
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
# } else {
# print("FAIL: NA replacement in df_duet NOT successful")
# quit()
# }
#
# max(df_duet$b); min(df_duet$b)
#
# # sanity checks: should be True
# if( (max(df_duet$b) == max(my_df$avg_ens_stability_scaled)) & (min(df_duet$b) == min(my_df$avg_ens_stability_scaled)) ){
# print("PASS: B-factors replaced correctly in df_duet")
# } else {
# print ("FAIL: To replace B-factors in df_duet")
# quit()
# }
# if( (max(df_lig$b) == max(my_df$avg_ens_affinity_scaled)) & (min(df_lig$b) == min(my_df$avg_ens_affinity_scaled)) ){
# print("PASS: B-factors replaced correctly in df_lig")
# } else {
# print ("FAIL: To replace B-factors in df_lig")
# quit()
# }
#=========
# step 3_P1
#=========
# sanity check: dim should be same before reassignment
if ( (dim(df_duet)[1] == dim(d2_duet)[1]) &
(dim(df_duet)[2] == dim(d2_duet)[2])
){
print("PASS: Dims of both dfs as expected")
} else {
print ("FAIL: Dims mismatch")
quit()}
#=========
# step 4_P1:
# VERY important
#=========
# assign it back to the pdb file
my_pdb_duet[['atom']] = df_duet
max(df_duet$b); min(df_duet$b)
table(df_duet$b)
sum(is.na(df_duet$b))
#=========
# step 5_P1
#=========
cat(paste0("output file mean ppi2 pdb:"
, outfile_ppi2_mspdb))
write.pdb(my_pdb_duet, outfile_ppi2_mspdb)
#============================
# Add the 3rd histogram and density plots for comparisons
#============================
# Plots continued...
# Row 3 plots: hist and density of replaced B-factors with stability values
hist(df_duet$b
, xlab = ""
, main = "repalcedB duet")
plot(density(df_duet$b)
, xlab = ""
, main = "replacedB duet")
# graph titles
mtext(text = "Frequency"
, side = 2
, line = 0
, outer = TRUE)
mtext(text = paste0(tolower(gene), ": ppi2 distribution")
, side = 3
, line = 0
, outer = TRUE)
#============================================
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# NOTE: This replaced B-factor distribution has the same
# x-axis as the PredAff normalised values, but the distribution
# is affected since 0 is overinflated/or hs an additional blip because
# of the positions not associated with resistance. This is because all the positions
# where there are no SNPs have been assigned 0???
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!