LSHTM_analysis/scripts/plotting/subcols_axis_PS.R

241 lines
7.4 KiB
R
Executable file

#########################################################
# TASK: Adding colours to dfs so they can be used for plotting
# add cols to each of the my_df* dfs
#########################################################
#=======================================================================
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
source("plotting_data.R")
# should return the following dfs and directories
# my_df
# my_df_u
# my_df_u_lig
# dup_muts
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nLength of upos:", length(upos)
, "\nAngstrom symbol:", angstroms_symbol))
# clear excess variable
rm(upos, dup_muts, my_df_u, my_df_u_lig)
# This is because we want to assign the colours to my_df
# and then resubset accordingly for our plots to avoid multiple merges
#=======================================================================
# df to use: my_df
# NOTE: my_df contains duplicate muts but its ok as you are only adding
# colours to positions
# sanity checks: ensure my_df is ordered by position: it should be
my_df$position; my_df$mutationinformation
my_df_o = my_df[order(my_df$position),]
my_df_o$position; my_df_o$mutationinformation
head(my_df_o$position) == head(my_df$position)
head(my_df_o$mutationinformation) == head(my_df$mutationinformation)
tail(my_df_o$position) == tail(my_df$position)
tail(my_df_o$mutationinformation) == tail(my_df$mutationinformation)
my_df = my_df_o
# create a new df with unique position numbers and cols
position = unique(my_df$position)
position_cols = as.data.frame(position)
head(position_cols) ; tail(position_cols)
# specify active site residues and bg colour
position = c(49, 51, 57, 71
, 8, 96, 138
, 13, 68
, 103, 137
, 133, 134) #13
lab_bg = rep(c("purple"
, "yellow"
, "cornflowerblue"
, "blue"
, "green"), times = c(4, 3, 2, 2, 2)
)
# second bg colour for active site residues
#lab_bg2 = rep(c("white"
# , "green" , "white", "green"
# , "white"
# , "white"
# , "white"), times = c(4
# , 1, 1, 1
# , 2
# , 2
# , 2)
#)
#%%%%%%%%%
# revised: leave the second box coloured as the first one incase there is no second colour
#%%%%%%%%%
lab_bg2 = rep(c("purple"
, "green", "yellow", "green"
, "cornflowerblue"
, "blue"
, "green"), times = c(4
, 1, 1, 1
, 2
, 2
, 2))
# fg colour for labels for active site residues
lab_fg = rep(c("white"
, "black"
, "black"
, "white"
, "black"), times = c(4, 3, 2, 2, 2))
#%%%%%%%%%
# revised: make the purple ones black
# fg colour for labels for active site residues
#%%%%%%%%%
#lab_fg = rep(c("black"
# , "black"
# , "black"
# , "white"
# , "black"), times = c(4, 3, 2, 2, 2))
# combined df with active sites, bg and fg colours
aa_cols_ref = data.frame(position
, lab_bg
, lab_bg2
, lab_fg
, stringsAsFactors = F) #13, 4
str(position_cols); class(position_cols)
str(aa_cols_ref); class(aa_cols_ref)
# since position is int and numeric in the two dfs resp,
# converting numeric to int for consistency
aa_cols_ref$position = as.integer(aa_cols_ref$position)
class(aa_cols_ref$position)
#===========
# Merge 1: merging positions df (position_cols) and
# active site cols (aa_cols_ref)
# linking column: "position"
# This is so you can have colours defined for all positions
#===========
head(position_cols$position); head(aa_cols_ref$position)
mut_pos_cols = merge(position_cols, aa_cols_ref
, by = "position"
, all.x = TRUE)
head(mut_pos_cols)
# replace NA"s
# :column "lab_bg" with "white"
# : column "lab_fg" with "black"
mut_pos_cols$lab_bg[is.na(mut_pos_cols$lab_bg)] <- "white"
mut_pos_cols$lab_bg2[is.na(mut_pos_cols$lab_bg2)] <- "white"
mut_pos_cols$lab_fg[is.na(mut_pos_cols$lab_fg)] <- "black"
head(mut_pos_cols)
#===========
# Merge 2: Merge mut_pos_cols with mcsm df
# Now combined the positions with aa colours with
# the mcsm_data
#===========
# dfs to merge
df0 = my_df # my_df_o
df1 = mut_pos_cols
# check the column on which merge will be performed
head(df0$position); tail(df0$position)
head(df1$position); tail(df1$position)
# should now have 3 extra columns
my_df_cols = merge(df0, df1
, by = "position"
, all.x = TRUE)
# sanity check
my_df_cols[my_df_cols$position == "49",]
my_df_cols[my_df_cols$position == "13",]
###########################
# extract unique mutation entries
###########################
# check for duplicate mutations
if ( length(unique(my_df_cols$mutationinformation)) != length(my_df_cols$mutationinformation)){
cat(paste0("\nCAUTION:", " Duplicate mutations identified"
, "\nExtracting these..."))
dup_muts_cols = my_df_cols[duplicated(my_df_cols$mutationinformation),]
dup_muts_cols_nu = length(unique(dup_muts_cols$mutationinformation))
cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts_cols)
, "\nNo. of unique duplicate mutations:", dup_muts_cols_nu
, "\n\nExtracting df with unique mutations only"))
my_df_u_cols = my_df_cols[!duplicated(my_df_cols$mutationinformation),]
}else{
cat(paste0("\nNo duplicate mutations detected"))
my_df_u_cols = my_df_cols
}
upos = unique(my_df_u_cols$position)
cat("\nDim of clean df:"); cat(dim(my_df_u_cols))
cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n")
# sanity check
my_df_u_cols[my_df_u_cols$position == "49",]
my_df_u_cols[my_df_u_cols$position == "13",]
my_df_u_cols[my_df_u_cols$position == "103",]
###########################
# extract mutations <10Angstroms
###########################
table(my_df_u_cols$ligand_distance<10)
my_df_u_cols_lig = my_df_u_cols[my_df_u_cols$ligand_distance <10,]
angstroms_symbol = "\u212b"
cat(paste0("There are ", nrow(my_df_u_cols_lig), " sites lying within 10", angstroms_symbol, " of the ligand"))
#=================
# very important!
#=================
#my_axis_colours = mut_pos_cols$lab_fg # doesn't work if positions numbers are subsetted as in ligand
# need the equivalent of the mut_pos_cols for ligand
# get position numbers for ligand
lig_pos = my_df_u_cols_lig$position
# subset mut_pos_cols for ligand positions
mut_pos_cols_lig = mut_pos_cols[mut_pos_cols$position %in% lig_pos,]
#my_axis_colours = mut_pos_cols_lig$lab_fg
#====================================================================
# clear variables
rm(aa_cols_ref
, my_df
, df0
, df1
, position_cols
, lab_bg
, lab_bg2
, lab_fg
, position)
#######################################################################
# end of script
#######################################################################