LSHTM_analysis/scripts/plotting/plotting_thesis/gid/gid_ORandSNP_results.R

205 lines
6.4 KiB
R

#!/usr/bin/env Rscript
#source("~/git/LSHTM_analysis/config/gid.R")
#source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
###################################################################
# FIXME: ADD distance to NA when SP replies
geneL_normal = c("pnca")
geneL_na = c("gid", "rpob")
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
# LigDist_colname # from globals used
# ppi2Dist_colname #from globals used
# naDist_colname #from globals used
common_cols = c("mutationinformation"
, "X5uhc_position"
, "X5uhc_offset"
, "position"
, "dst_mode"
, "mutation_info_labels"
, "sensitivity", dist_columns )
########################################
categ_cols_to_factor = grep( "_outcome|_info", colnames(merged_df3) )
fact_cols = colnames(merged_df3)[categ_cols_to_factor]
if (any(lapply(merged_df3[, fact_cols], class) == "character")){
cat("\nChanging", length(categ_cols_to_factor), "cols to factor")
merged_df3[, fact_cols] <- lapply(merged_df3[, fact_cols], as.factor)
if (all(lapply(merged_df3[, fact_cols], class) == "factor")){
cat("\nSuccessful: cols changed to factor")
}
}else{
cat("\nRequested cols aready factors")
}
cat("\ncols changed to factor are:\n", colnames(merged_df3)[categ_cols_to_factor] )
####################################
# merged_df3: NECESSARY pre-processing
###################################
#df3 = merged_df3
plot_cols = c("mutationinformation", "mutation_info_labels", "position", "dst_mode"
, all_cols)
all_cols = c(common_cols
, all_stability_cols
, all_affinity_cols
, all_conserv_cols)
# counting
foo = merged_df3[, c("mutationinformation"
, "wild_pos"
, "position"
, "sensitivity"
, "avg_lig_affinity"
, "avg_lig_affinity_scaled"
, "avg_lig_affinity_outcome"
, "ligand_distance"
, "ligand_affinity_change"
, "affinity_scaled"
, "ligand_outcome"
, "consurf_colour_rev"
, "consurf_outcome")]
table(foo$consurf_outcome)
foo2 = foo[foo$ligand_distance<10,]
table(foo2$ligand_outcome)
#############################
# wide plots SAV
# DRUG
length(aa_pos_drug); aa_pos_drug
drug = foo[foo$position%in%aa_pos_drug,]
drug$wild_pos
#CA
###############################################
# OR plot
bar = merged_df3[, c("mutationinformation"
, "wild_pos"
, "position"
, "sensitivity"
, affinity_dist_colnames
, "or_mychisq"
, "pval_fisher"
#, "pval_chisq"
, "neglog_pval_fisher"
, "log10_or_mychisq")]
# bar$p_adj_bonferroni = p.adjust(bar$pval_fisher, method = "bonferroni")
# bar$signif_bon = bar$p_adj_bonferroni
# bar = dplyr::mutate(bar
# , signif_bon = case_when(signif_bon == 0.05 ~ "."
# , signif_bon <=0.0001 ~ '****'
# , signif_bon <=0.001 ~ '***'
# , signif_bon <=0.01 ~ '**'
# , signif_bon <0.05 ~ '*'
# , TRUE ~ 'ns'))
bar$p_adj_fdr = p.adjust(bar$pval_fisher, method = "BH")
bar$signif_fdr = bar$p_adj_fdr
bar = dplyr::mutate(bar
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
, signif_fdr <=0.0001 ~ '****'
, signif_fdr <=0.001 ~ '***'
, signif_fdr <=0.01 ~ '**'
, signif_fdr <0.05 ~ '*'
, TRUE ~ 'ns'))
# sort df
bar = bar[order(bar$or_mychisq, decreasing = T), ]
bar = bar[, c("mutationinformation"
, "wild_pos"
, "position"
, "sensitivity"
, affinity_dist_colnames
, "or_mychisq"
#, "pval_fisher"
#, "pval_chisq"
#, "neglog_pval_fisher"
#, "log10_or_mychisq"
#, "signif_bon"
, "p_adj_fdr"
, "signif_fdr")]
table(bar$sensitivity)
str(bar)
sen = bar[bar$or_mychisq<1,]
sen = na.omit(sen)
res = bar[bar$or_mychisq>1,]
res = na.omit(res)
# comp
bar_or = bar[!is.na(bar$or_mychisq),]
table(bar_or$sensitivity)
sen1 = bar_or[bar_or$or_mychisq<1,] # sen and res ~OR
res1 = bar_or[bar_or$or_mychisq>1,] # sen and res ~OR
# sanity check
if (nrow(bar_or) == nrow(sen1) + nrow(res1) ){
cat("\nPASS: df with or successfully sourced"
, "\nCalculating % of muts with OR>1")
}else{
stop("Abort: df with or numbers mimatch")
}
# percent for OR muts
pc_orR = nrow(res1)/(nrow(sen1) + nrow(res1)); pc_orR
cat("Number of R muts with OR>1:", nrow(res1)
, "\nPercentage of muts with OR>1 i.e resistant:"
, pc_orR *100 )
# muts with highest OR
head(bar_or$mutationinformation, 10)
# sort df
bar_or = bar_or[order(bar_or$or_mychisq
, bar_or$ligand_distance
, bar_or$nca_dist
#, bar_or$interface_dist
, decreasing = T), ]
nrow(bar_or)
bar_or$drug_site = ifelse(bar_or$position%in%aa_pos_drug, "drug", "no")
table(bar_or$drug_site)
bar_or$rna_site = ifelse(bar_or$position%in%aa_pos_rna, "rna", "no")
table(bar_or$dsl_site)
bar_or$sam_site = ifelse(bar_or$position%in%aa_pos_sam, "sam", "no")
table(bar_or$ca_site)
bar_or$amp_site = ifelse(bar_or$position%in%aa_pos_amp, "amp", "no")
table(bar_or$cdl_site)
top10_or = bar_or[1:10,]
# are these active sites
top10_or$position[top10_or$position%in%active_aa_pos]
# clostest most sig
bar_or_lig = bar_or[bar_or$ligand_distance<10,]
bar_or_lig = bar_or_lig[order(bar_or_lig$ligand_distance, -bar_or_lig$or_mychisq), ]
table(bar_or_lig$signif_fdr)
bar_or_ppi = bar_or[bar_or$interface_dist<10,]
bar_or_ppi = bar_or_ppi[order(bar_or_ppi$interface_dist, -bar_or_ppi$or_mychisq), ]
table(bar_or_ppi$signif_fdr)