105 lines
3.2 KiB
Text
105 lines
3.2 KiB
Text
/home/tanu/git/LSHTM_analysis/scripts/ml/ml_data.py:550: SettingWithCopyWarning:
|
|
A value is trying to be set on a copy of a slice from a DataFrame
|
|
|
|
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
|
|
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
|
|
1.22.4
|
|
1.4.1
|
|
|
|
aaindex_df contains non-numerical data
|
|
|
|
Total no. of non-numerial columns: 2
|
|
|
|
Selecting numerical data only
|
|
|
|
PASS: successfully selected numerical columns only for aaindex_df
|
|
|
|
Now checking for NA in the remaining aaindex_cols
|
|
|
|
Counting aaindex_df cols with NA
|
|
ncols with NA: 4 columns
|
|
Dropping these...
|
|
Original ncols: 127
|
|
|
|
Revised df ncols: 123
|
|
|
|
Checking NA in revised df...
|
|
|
|
PASS: cols with NA successfully dropped from aaindex_df
|
|
Proceeding with combining aa_df with other features_df
|
|
|
|
PASS: ncols match
|
|
Expected ncols: 123
|
|
Got: 123
|
|
|
|
Total no. of columns in clean aa_df: 123
|
|
|
|
Proceeding to merge, expected nrows in merged_df: 271
|
|
|
|
PASS: my_features_df and aa_df successfully combined
|
|
nrows: 271
|
|
ncols: 269
|
|
count of NULL values before imputation
|
|
|
|
or_mychisq 256
|
|
log10_or_mychisq 256
|
|
dtype: int64
|
|
count of NULL values AFTER imputation
|
|
|
|
mutationinformation 0
|
|
or_rawI 0
|
|
logorI 0
|
|
dtype: int64
|
|
|
|
PASS: OR values imputed, data ready for ML
|
|
|
|
No. of numerical features: 45
|
|
No. of categorical features: 7
|
|
|
|
index: 0
|
|
ind: 1
|
|
|
|
Mask count check: True
|
|
|
|
index: 1
|
|
ind: 2
|
|
|
|
Mask count check: True
|
|
Original Data
|
|
Counter({0: 7, 1: 1}) Data dim: (8, 52)
|
|
|
|
-------------------------------------------------------------
|
|
Successfully split data: UQ [no aa_index but active site included] training
|
|
actual values: training set
|
|
imputed values: blind test set
|
|
Train data size: (8, 52)
|
|
Test data size: (263, 52)
|
|
y_train numbers: Counter({0: 7, 1: 1})
|
|
y_train ratio: 7.0
|
|
|
|
y_test_numbers: Counter({0: 262, 1: 1})
|
|
y_test ratio: 262.0
|
|
-------------------------------------------------------------
|
|
Simple Random OverSampling
|
|
Counter({0: 7, 1: 7})
|
|
(14, 52)
|
|
Simple Random UnderSampling
|
|
Counter({0: 1, 1: 1})
|
|
(2, 52)
|
|
Simple Combined Over and UnderSampling
|
|
Counter({0: 7, 1: 7})
|
|
(14, 52)
|
|
Traceback (most recent call last):
|
|
File "/home/tanu/git/LSHTM_analysis/scripts/ml/./alr_config.py", line 26, in <module>
|
|
setvars(gene,drug)
|
|
File "/home/tanu/git/LSHTM_analysis/scripts/ml/ml_data.py", line 701, in setvars
|
|
X_smnc, y_smnc = sm_nc.fit_resample(X, y)
|
|
File "/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/imblearn/base.py", line 83, in fit_resample
|
|
output = self._fit_resample(X, y)
|
|
File "/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/imblearn/over_sampling/_smote/base.py", line 533, in _fit_resample
|
|
X_resampled, y_resampled = super()._fit_resample(X_encoded, y)
|
|
File "/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/imblearn/over_sampling/_smote/base.py", line 324, in _fit_resample
|
|
nns = self.nn_k_.kneighbors(X_class, return_distance=False)[:, 1:]
|
|
File "/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 749, in kneighbors
|
|
raise ValueError(
|
|
ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6
|