221 lines
No EOL
7.2 KiB
R
221 lines
No EOL
7.2 KiB
R
#=======================================================================
|
|
# Task: To generate a logo plot or bar plot but coloured
|
|
# aa properties.
|
|
# step1: read mcsm file and OR file
|
|
# step2: plot wild type positions
|
|
# step3: plot mutants per position coloured by aa properties
|
|
# step4: make the size of the letters/bars prop to OR if you can!
|
|
|
|
# useful links
|
|
# https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
|
# https://omarwagih.github.io/ggseqlogo/
|
|
# https://kkdey.github.io/Logolas-pages/workflow.html
|
|
# A new sequence logo plot to highlight enrichment and depletion.
|
|
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
|
|
|
|
#very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
|
|
#=======================================================================
|
|
#%% specify curr dir
|
|
getwd()
|
|
setwd('~/git/LSHTM_analysis/plotting_test/')
|
|
getwd()
|
|
#=======================================================================
|
|
#%% load packages
|
|
|
|
# header file
|
|
header_dir = '~/git/LSHTM_analysis/'
|
|
source(paste0(header_dir, '/', 'my_header.R'))
|
|
#=======================================================================
|
|
#%% variable assignment: input and output paths & filenames
|
|
drug = 'pyrazinamide'
|
|
gene = 'pncA'
|
|
gene_match = paste0(gene,'_p.')
|
|
cat(gene_match)
|
|
|
|
#===========
|
|
# data dir
|
|
#===========
|
|
datadir = paste0('~/git/Data')
|
|
|
|
#===========
|
|
# input
|
|
#===========
|
|
# source R script 'combining_two_df.R'
|
|
#indir = paste0(datadir, '/', drug, '/', 'output') # reading files
|
|
indir = '../meta_data_analysis' # sourcing R script
|
|
in_filename = 'combining_df_ps.R'
|
|
infile = paste0(indir, '/', in_filename)
|
|
cat(paste0('Input is a R script: ', '\'', infile, '\'')
|
|
, '\n========================================================')
|
|
|
|
#===========
|
|
# output
|
|
#===========
|
|
# 1) lineage dist of all muts
|
|
outdir = paste0('~/git/Data', '/', drug, '/', 'output/plots') #same as indir
|
|
#cat('Output dir: ', outdir, '\n')
|
|
#file_type = '.svg'
|
|
#out_filename1 = paste0(tolower(gene), '_lineage_dist_ps', file_type)
|
|
#outfile1 = paste0(outdir, '/', out_filename1)
|
|
#cat(paste0('Output plot1 :', outfile1)
|
|
# , '\n========================================================')
|
|
|
|
#%% end of variable assignment for input and output files
|
|
#=======================================================================
|
|
##%% read input file
|
|
cat('Reading input file(sourcing R script):', in_filename)
|
|
|
|
source(infile)
|
|
|
|
#==========================
|
|
# This will return:
|
|
|
|
# df with NA for pyrazinamide:
|
|
# merged_df2
|
|
# merged_df3
|
|
|
|
# df without NA for pyrazinamide:
|
|
# merged_df2_comp
|
|
# merged_df3_comp
|
|
#===========================
|
|
|
|
###########################
|
|
# Data for plots
|
|
# you need merged_df2 or merged_df2_comp
|
|
# since this is one-many relationship
|
|
# i.e the same SNP can belong to multiple lineages
|
|
# using the _comp dataset means
|
|
# we lose some muts and at this level, we should use
|
|
# as much info as available, hence use df with NA
|
|
|
|
# This will the first plotting df
|
|
# Then subset this to extract dr muts only (second plottig df)
|
|
###########################
|
|
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
# uncomment as necessary
|
|
# REASSIGNMENT
|
|
#my_data = merged_df2
|
|
#my_data = merged_df2_comp
|
|
#my_data = merged_df3
|
|
my_data = merged_df3_comp
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
# delete variables not required
|
|
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
|
|
|
# quick checks
|
|
colnames(my_data)
|
|
str(my_data)
|
|
|
|
c1 = unique(my_data$Position)
|
|
nrow(my_data)
|
|
cat('No. of rows in my_data:', nrow(my_data)
|
|
, '\nDistinct positions corresponding to snps:', length(c1)
|
|
, '\n===========================================================')
|
|
|
|
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
# FIXME: Think and decide what you want to remove
|
|
# mut_pos_occurence < 1 or sample_pos_occurrence <1
|
|
|
|
# get freq count of positions so you can subset freq<1
|
|
require(data.table)
|
|
#setDT(my_data)[, mut_pos_occurrence := .N, by = .(Position)] #265, 14
|
|
|
|
#extract freq_pos>1
|
|
#my_data_snp = my_data[my_data$occurrence!=1,]
|
|
|
|
#u = unique(my_data_snp$Position) #73
|
|
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
# REASSIGNMENT to prevent changing code
|
|
my_data_snp = my_data
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
#=======================================================================
|
|
#%% logo plots from dataframe
|
|
|
|
#############
|
|
# PLOTS: ggseqlogo with custom height
|
|
# https://omarwagih.github.io/ggseqlogo/
|
|
#############
|
|
#require(ggplot2)
|
|
#require(tidyverse)
|
|
library(ggseqlogo)
|
|
|
|
foo = my_data_snp[, c("Position", "Mutant_type","ratioDUET", "OR"
|
|
, "mut_prop_polarity", "mut_prop_water") ]
|
|
|
|
# log10OR
|
|
# FIXME: at the source script (when calculating AFandOR)
|
|
my_data_snp$log10or = log10(my_data_snp$OR)
|
|
bar = my_data_snp[, c('Position', 'Mutant_type', 'OR', 'logor', 'log10or')]
|
|
|
|
|
|
bar_or = my_data_snp[, c('Position', 'Mutant_type', 'OR')]
|
|
wide_df_or <- bar_or %>% spread(Position, OR, fill = 0)
|
|
wide_df_or = as.matrix(wide_df_or)
|
|
rownames(wide_df_or) = wide_df_or[,1]
|
|
wide_df_or = wide_df_or[,-1]
|
|
|
|
# custom height (OR) logo plot: yayy works
|
|
ggseqlogo(wide_df_or, method='custom', seq_type='aa') + ylab('my custom height') +
|
|
theme(legend.position = "bottom"
|
|
, axis.text.x = element_text(size = 11
|
|
, angle = 90
|
|
, hjust = 1
|
|
, vjust = 0.4)
|
|
, axis.text.y = element_text(size = 15
|
|
, angle = 0
|
|
, hjust = 1
|
|
, vjust = 0))+
|
|
labs(title = "AA logo plot"
|
|
, x = "Wild-type Position"
|
|
, y = "OR")
|
|
#%% end of logo plot with OR as height
|
|
#=======================================================================
|
|
# extracting data with log10OR
|
|
bar_logor = my_data_snp[, c('Position', 'Mutant_type', 'log10or')]
|
|
wide_df_logor <- bar_logor %>% spread(Position, log10or, fill = 0)
|
|
|
|
wide_df_logor = as.matrix(wide_df_logor)
|
|
rownames(wide_df_logor) = wide_df_logor[,1]
|
|
wide_df_logor = wide_df_logor[,-1]
|
|
|
|
# custom height (log10OR) logo plot: yayy works
|
|
ggseqlogo(wide_df_logor, method='custom', seq_type='aa') + ylab('my custom height') +
|
|
theme(legend.position = "bottom"
|
|
, axis.text.x = element_text(size = 11
|
|
, angle = 90
|
|
, hjust = 1
|
|
, vjust = 0.4)
|
|
, axis.text.y = element_text(size = 15
|
|
, angle = 0
|
|
, hjust = 1
|
|
, vjust = 0))+
|
|
labs(title = "AA logo plot"
|
|
, x = "Wild-type Position"
|
|
, y = "Log10(OR)")
|
|
|
|
#=======================================================================
|
|
#%% logo plot from sequence
|
|
|
|
#################
|
|
# Plot: LOGOLAS (ED plots)
|
|
# link: https://github.com/kkdey/Logolas
|
|
# on all pncA samples: output of mutate.py
|
|
################
|
|
library(Logolas)
|
|
|
|
seqs = read.csv('~/git//Data/pyrazinamide/output/pnca_msa.txt'
|
|
, header = FALSE
|
|
, stringsAsFactors = FALSE)$V1
|
|
|
|
|
|
# my_data: useful!
|
|
logomaker(seqs, type = "EDLogo", color_type = 'per_symbol'
|
|
, return_heights = TRUE)
|
|
logomaker(seqs, type = "Logo", color_type = 'per_symbol')
|
|
|
|
#%% end of script
|
|
#======================================================================= |