LSHTM_analysis/plotting_test/logo_plot.R

221 lines
No EOL
7.2 KiB
R

#=======================================================================
# Task: To generate a logo plot or bar plot but coloured
# aa properties.
# step1: read mcsm file and OR file
# step2: plot wild type positions
# step3: plot mutants per position coloured by aa properties
# step4: make the size of the letters/bars prop to OR if you can!
# useful links
# https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
# https://omarwagih.github.io/ggseqlogo/
# https://kkdey.github.io/Logolas-pages/workflow.html
# A new sequence logo plot to highlight enrichment and depletion.
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
#very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
#=======================================================================
#%% specify curr dir
getwd()
setwd('~/git/LSHTM_analysis/plotting_test/')
getwd()
#=======================================================================
#%% load packages
# header file
header_dir = '~/git/LSHTM_analysis/'
source(paste0(header_dir, '/', 'my_header.R'))
#=======================================================================
#%% variable assignment: input and output paths & filenames
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = paste0(gene,'_p.')
cat(gene_match)
#===========
# data dir
#===========
datadir = paste0('~/git/Data')
#===========
# input
#===========
# source R script 'combining_two_df.R'
#indir = paste0(datadir, '/', drug, '/', 'output') # reading files
indir = '../meta_data_analysis' # sourcing R script
in_filename = 'combining_df_ps.R'
infile = paste0(indir, '/', in_filename)
cat(paste0('Input is a R script: ', '\'', infile, '\'')
, '\n========================================================')
#===========
# output
#===========
# 1) lineage dist of all muts
outdir = paste0('~/git/Data', '/', drug, '/', 'output/plots') #same as indir
#cat('Output dir: ', outdir, '\n')
#file_type = '.svg'
#out_filename1 = paste0(tolower(gene), '_lineage_dist_ps', file_type)
#outfile1 = paste0(outdir, '/', out_filename1)
#cat(paste0('Output plot1 :', outfile1)
# , '\n========================================================')
#%% end of variable assignment for input and output files
#=======================================================================
##%% read input file
cat('Reading input file(sourcing R script):', in_filename)
source(infile)
#==========================
# This will return:
# df with NA for pyrazinamide:
# merged_df2
# merged_df3
# df without NA for pyrazinamide:
# merged_df2_comp
# merged_df3_comp
#===========================
###########################
# Data for plots
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
# This will the first plotting df
# Then subset this to extract dr muts only (second plottig df)
###########################
#%%%%%%%%%%%%%%%%%%%%%%%%%
# uncomment as necessary
# REASSIGNMENT
#my_data = merged_df2
#my_data = merged_df2_comp
#my_data = merged_df3
my_data = merged_df3_comp
#%%%%%%%%%%%%%%%%%%%%%%%%%%
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_data)
str(my_data)
c1 = unique(my_data$Position)
nrow(my_data)
cat('No. of rows in my_data:', nrow(my_data)
, '\nDistinct positions corresponding to snps:', length(c1)
, '\n===========================================================')
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: Think and decide what you want to remove
# mut_pos_occurence < 1 or sample_pos_occurrence <1
# get freq count of positions so you can subset freq<1
require(data.table)
#setDT(my_data)[, mut_pos_occurrence := .N, by = .(Position)] #265, 14
#extract freq_pos>1
#my_data_snp = my_data[my_data$occurrence!=1,]
#u = unique(my_data_snp$Position) #73
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT to prevent changing code
my_data_snp = my_data
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#=======================================================================
#%% logo plots from dataframe
#############
# PLOTS: ggseqlogo with custom height
# https://omarwagih.github.io/ggseqlogo/
#############
#require(ggplot2)
#require(tidyverse)
library(ggseqlogo)
foo = my_data_snp[, c("Position", "Mutant_type","ratioDUET", "OR"
, "mut_prop_polarity", "mut_prop_water") ]
# log10OR
# FIXME: at the source script (when calculating AFandOR)
my_data_snp$log10or = log10(my_data_snp$OR)
bar = my_data_snp[, c('Position', 'Mutant_type', 'OR', 'logor', 'log10or')]
bar_or = my_data_snp[, c('Position', 'Mutant_type', 'OR')]
wide_df_or <- bar_or %>% spread(Position, OR, fill = 0)
wide_df_or = as.matrix(wide_df_or)
rownames(wide_df_or) = wide_df_or[,1]
wide_df_or = wide_df_or[,-1]
# custom height (OR) logo plot: yayy works
ggseqlogo(wide_df_or, method='custom', seq_type='aa') + ylab('my custom height') +
theme(legend.position = "bottom"
, axis.text.x = element_text(size = 11
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = 15
, angle = 0
, hjust = 1
, vjust = 0))+
labs(title = "AA logo plot"
, x = "Wild-type Position"
, y = "OR")
#%% end of logo plot with OR as height
#=======================================================================
# extracting data with log10OR
bar_logor = my_data_snp[, c('Position', 'Mutant_type', 'log10or')]
wide_df_logor <- bar_logor %>% spread(Position, log10or, fill = 0)
wide_df_logor = as.matrix(wide_df_logor)
rownames(wide_df_logor) = wide_df_logor[,1]
wide_df_logor = wide_df_logor[,-1]
# custom height (log10OR) logo plot: yayy works
ggseqlogo(wide_df_logor, method='custom', seq_type='aa') + ylab('my custom height') +
theme(legend.position = "bottom"
, axis.text.x = element_text(size = 11
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = 15
, angle = 0
, hjust = 1
, vjust = 0))+
labs(title = "AA logo plot"
, x = "Wild-type Position"
, y = "Log10(OR)")
#=======================================================================
#%% logo plot from sequence
#################
# Plot: LOGOLAS (ED plots)
# link: https://github.com/kkdey/Logolas
# on all pncA samples: output of mutate.py
################
library(Logolas)
seqs = read.csv('~/git//Data/pyrazinamide/output/pnca_msa.txt'
, header = FALSE
, stringsAsFactors = FALSE)$V1
# my_data: useful!
logomaker(seqs, type = "EDLogo", color_type = 'per_symbol'
, return_heights = TRUE)
logomaker(seqs, type = "Logo", color_type = 'per_symbol')
#%% end of script
#=======================================================================