167 lines
5.6 KiB
Python
Executable file
167 lines
5.6 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
'''
|
|
Created on Tue Aug 6 12:56:03 2019
|
|
|
|
@author: tanu
|
|
'''
|
|
|
|
# FIXME: import dirs.py to get the basic dir paths available
|
|
#=======================================================================
|
|
# TASK: calculate how many mutations result in
|
|
# electrostatic changes wrt wt
|
|
|
|
# Input: mcsm and AF_OR file
|
|
|
|
# Output: mut_elec_changes_results.txt
|
|
#=======================================================================
|
|
#%% load libraries
|
|
import os, sys
|
|
import pandas as pd
|
|
#import numpy as np
|
|
#=======================================================================
|
|
#%% specify homedir and curr dir
|
|
homedir = os.path.expanduser('~')
|
|
|
|
# set working dir
|
|
os.getcwd()
|
|
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
|
|
os.getcwd()
|
|
#=======================================================================
|
|
#%% variable assignment: input and output
|
|
drug = 'pyrazinamide'
|
|
gene = 'pncA'
|
|
gene_match = gene + '_p.'
|
|
|
|
#==========
|
|
# data dir
|
|
#==========
|
|
#indir = 'git/Data/pyrazinamide/input/original'
|
|
datadir = homedir + '/' + 'git/Data'
|
|
|
|
#=======
|
|
# input
|
|
#=======
|
|
indir = datadir + '/' + drug + '/' + 'input'
|
|
in_filename = 'merged_df3.csv'
|
|
infile = outdir + '/' + in_filename
|
|
print('Input filename: ', in_filename
|
|
, '\nInput path: ', indir
|
|
, '\n============================================================')
|
|
|
|
#=======
|
|
# output
|
|
#=======
|
|
outdir = datadir + '/' + drug + '/' + 'output'
|
|
# specify output file
|
|
out_filename = 'mut_elec_changes.txt'
|
|
outfile = outdir + '/' + out_filename
|
|
print('Output filename: ', out_filename
|
|
, '\nOutput path: ', outdir
|
|
, '\n============================================================')
|
|
|
|
#%% end of variable assignment for input and output files
|
|
#=======================================================================
|
|
#%% Read input files
|
|
print('Reading input file (merged file):', infile)
|
|
|
|
comb_df = pd.read_csv(infile, sep = ',')
|
|
|
|
print('Input filename: ', in_filename
|
|
, '\nPath :', outdir
|
|
, '\nNo. of rows: ', len(comb_df)
|
|
, '\nNo. of cols: ', infile
|
|
, '\n============================================================')
|
|
|
|
# column names
|
|
list(comb_df.columns)
|
|
|
|
# clear variables
|
|
del(in_filename, infile)
|
|
|
|
#%% subset unique mutations
|
|
df = comb_df.drop_duplicates(['Mutationinformation'], keep = 'first')
|
|
|
|
total_muts = df.Mutationinformation.nunique()
|
|
#df.Mutationinformation.count()
|
|
print('Total mutations associated with structure: ', total_muts
|
|
, '\n===============================================================')
|
|
|
|
#%% combine aa_calcprop cols so that you can count the changes as value_counts
|
|
# check if all muts have been categorised
|
|
print('Checking if all muts have been categorised: ')
|
|
if df['wt_calcprop'].isna().sum() == 0 & df['mut_calcprop'].isna().sum():
|
|
print('PASS: No. NA detected i.e all muts have aa prop associated'
|
|
, '\n===============================================================')
|
|
else:
|
|
print('FAIL: NAs detected i.e some muts remain unclassified'
|
|
, '\n===============================================================')
|
|
|
|
df['wt_calcprop'].head()
|
|
df['mut_calcprop'].head()
|
|
|
|
print('Combining wt_calcprop and mut_calcprop...')
|
|
#df['aa_calcprop_combined'] = df['wt_calcprop']+ '->' + df['mut_calcprop']
|
|
df['aa_calcprop_combined'] = df.wt_calcprop.str.cat(df.mut_calcprop, sep = '->')
|
|
df['aa_calcprop_combined'].head()
|
|
|
|
mut_categ = df["aa_calcprop_combined"].unique()
|
|
print('Total no. of aa_calc properties: ', len(mut_categ))
|
|
print('Categories are: ', mut_categ)
|
|
|
|
# counting no. of muts in each mut categ
|
|
|
|
# way1: count values within each combinaton
|
|
df.groupby('aa_calcprop_combined').size()
|
|
#df.groupby('aa_calcprop_combined').count()
|
|
|
|
# way2: count values within each combinaton
|
|
df['aa_calcprop_combined'].value_counts()
|
|
|
|
# comment: the two ways should be identical
|
|
# groupby result order is similar to pivot table order,
|
|
# I prefer the value_counts look
|
|
|
|
# assign to variable: count values within each combinaton
|
|
all_prop = df['aa_calcprop_combined'].value_counts()
|
|
|
|
# convert to a df from Series
|
|
ap_df = pd.DataFrame({'aa_calcprop': all_prop.index, 'mut_count': all_prop.values})
|
|
|
|
# subset df to contain only the changes in prop
|
|
all_prop_change = ap_df[ap_df['aa_calcprop'].isin(['neg->neg','non-polar->non-polar','polar->polar', 'pos->pos']) == False]
|
|
|
|
elec_count = all_prop_change.mut_count.sum()
|
|
print('Total no.of muts with elec changes: ', elec_count)
|
|
|
|
# calculate percentage of electrostatic changes
|
|
elec_changes = (elec_count/total_muts) * 100
|
|
|
|
print('Total number of electrostatic changes resulting from Mutation is (%):', elec_changes)
|
|
|
|
# check no change muts
|
|
no_change_muts = ap_df[ap_df['aa_calcprop'].isin(['neg->neg','non-polar->non-polar','polar->polar', 'pos->pos']) == True]
|
|
|
|
no_change_muts.mut_count.sum()
|
|
|
|
#%% output from console
|
|
#sys.stdout = open(file, 'w')
|
|
sys.stdout = open(outfile, 'w')
|
|
|
|
print('======================\n'
|
|
,'Unchanged muts'
|
|
,'\n=====================\n'
|
|
, no_change_muts
|
|
,'\n=============================\n'
|
|
, 'Muts with changed prop:'
|
|
, '\n============================\n'
|
|
, all_prop_change)
|
|
|
|
print('================================================================='
|
|
, '\nTotal number of electrostatic changes resulting from Mtation is (%):', elec_changes
|
|
, '\nTotal no. of muts: ', total_muts
|
|
, '\nTotal no. of changed muts: ', all_prop_change.mut_count.sum()
|
|
, '\nTotal no. of unchanged muts: ', no_change_muts.mut_count.sum()
|
|
, '\n===================================================================')
|
|
#%% end of script
|
|
#=======================================================================
|