LSHTM_analysis/meta_data_analysis/mut_electrostatic_changes.py

167 lines
5.6 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
# FIXME: import dirs.py to get the basic dir paths available
#=======================================================================
# TASK: calculate how many mutations result in
# electrostatic changes wrt wt
# Input: mcsm and AF_OR file
# Output: mut_elec_changes_results.txt
#=======================================================================
#%% load libraries
import os, sys
import pandas as pd
#import numpy as np
#=======================================================================
#%% specify homedir and curr dir
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
os.getcwd()
#=======================================================================
#%% variable assignment: input and output
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = gene + '_p.'
#==========
# data dir
#==========
#indir = 'git/Data/pyrazinamide/input/original'
datadir = homedir + '/' + 'git/Data'
#=======
# input
#=======
indir = datadir + '/' + drug + '/' + 'input'
in_filename = 'merged_df3.csv'
infile = outdir + '/' + in_filename
print('Input filename: ', in_filename
, '\nInput path: ', indir
, '\n============================================================')
#=======
# output
#=======
outdir = datadir + '/' + drug + '/' + 'output'
# specify output file
out_filename = 'mut_elec_changes.txt'
outfile = outdir + '/' + out_filename
print('Output filename: ', out_filename
, '\nOutput path: ', outdir
, '\n============================================================')
#%% end of variable assignment for input and output files
#=======================================================================
#%% Read input files
print('Reading input file (merged file):', infile)
comb_df = pd.read_csv(infile, sep = ',')
print('Input filename: ', in_filename
, '\nPath :', outdir
, '\nNo. of rows: ', len(comb_df)
, '\nNo. of cols: ', infile
, '\n============================================================')
# column names
list(comb_df.columns)
# clear variables
del(in_filename, infile)
#%% subset unique mutations
df = comb_df.drop_duplicates(['Mutationinformation'], keep = 'first')
total_muts = df.Mutationinformation.nunique()
#df.Mutationinformation.count()
print('Total mutations associated with structure: ', total_muts
, '\n===============================================================')
#%% combine aa_calcprop cols so that you can count the changes as value_counts
# check if all muts have been categorised
print('Checking if all muts have been categorised: ')
if df['wt_calcprop'].isna().sum() == 0 & df['mut_calcprop'].isna().sum():
print('PASS: No. NA detected i.e all muts have aa prop associated'
, '\n===============================================================')
else:
print('FAIL: NAs detected i.e some muts remain unclassified'
, '\n===============================================================')
df['wt_calcprop'].head()
df['mut_calcprop'].head()
print('Combining wt_calcprop and mut_calcprop...')
#df['aa_calcprop_combined'] = df['wt_calcprop']+ '->' + df['mut_calcprop']
df['aa_calcprop_combined'] = df.wt_calcprop.str.cat(df.mut_calcprop, sep = '->')
df['aa_calcprop_combined'].head()
mut_categ = df["aa_calcprop_combined"].unique()
print('Total no. of aa_calc properties: ', len(mut_categ))
print('Categories are: ', mut_categ)
# counting no. of muts in each mut categ
# way1: count values within each combinaton
df.groupby('aa_calcprop_combined').size()
#df.groupby('aa_calcprop_combined').count()
# way2: count values within each combinaton
df['aa_calcprop_combined'].value_counts()
# comment: the two ways should be identical
# groupby result order is similar to pivot table order,
# I prefer the value_counts look
# assign to variable: count values within each combinaton
all_prop = df['aa_calcprop_combined'].value_counts()
# convert to a df from Series
ap_df = pd.DataFrame({'aa_calcprop': all_prop.index, 'mut_count': all_prop.values})
# subset df to contain only the changes in prop
all_prop_change = ap_df[ap_df['aa_calcprop'].isin(['neg->neg','non-polar->non-polar','polar->polar', 'pos->pos']) == False]
elec_count = all_prop_change.mut_count.sum()
print('Total no.of muts with elec changes: ', elec_count)
# calculate percentage of electrostatic changes
elec_changes = (elec_count/total_muts) * 100
print('Total number of electrostatic changes resulting from Mutation is (%):', elec_changes)
# check no change muts
no_change_muts = ap_df[ap_df['aa_calcprop'].isin(['neg->neg','non-polar->non-polar','polar->polar', 'pos->pos']) == True]
no_change_muts.mut_count.sum()
#%% output from console
#sys.stdout = open(file, 'w')
sys.stdout = open(outfile, 'w')
print('======================\n'
,'Unchanged muts'
,'\n=====================\n'
, no_change_muts
,'\n=============================\n'
, 'Muts with changed prop:'
, '\n============================\n'
, all_prop_change)
print('================================================================='
, '\nTotal number of electrostatic changes resulting from Mtation is (%):', elec_changes
, '\nTotal no. of muts: ', total_muts
, '\nTotal no. of changed muts: ', all_prop_change.mut_count.sum()
, '\nTotal no. of unchanged muts: ', no_change_muts.mut_count.sum()
, '\n===================================================================')
#%% end of script
#=======================================================================