193 lines
6.4 KiB
Python
193 lines
6.4 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
'''
|
|
Created on Tue Aug 6 12:56:03 2019
|
|
|
|
@author: tanu
|
|
'''
|
|
#=======================================================================
|
|
# Task: Hydrophobicity (Kd) values for amino acid sequence using the
|
|
# Kyt&-Doolittle.
|
|
# Same output as using the expasy server https://web.expasy.org/protscale/
|
|
# Input: fasta file
|
|
|
|
# Output: csv file with
|
|
|
|
|
|
# useful links
|
|
# https://biopython.org/DIST/docs/api/Bio.SeqUtils.ProtParamData-pysrc.html
|
|
# https://jbloomlab.github.io/dms_tools2/dms_tools2.dssp.html
|
|
#=======================================================================
|
|
#%% load packages
|
|
from pylab import *
|
|
from Bio.SeqUtils import ProtParamData
|
|
from Bio.SeqUtils.ProtParam import ProteinAnalysis
|
|
from Bio import SeqIO
|
|
#from Bio.Alphabet.IUPAC import IUPACProtein
|
|
#import pprint as pp
|
|
import pandas as pd
|
|
import numpy as np
|
|
import sys, os
|
|
#=======================================================================
|
|
#%% specify input and curr dir
|
|
homedir = os.path.expanduser('~')
|
|
|
|
# set working dir
|
|
os.getcwd()
|
|
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
|
|
os.getcwd()
|
|
#=======================================================================
|
|
#%% variable assignment: input and output
|
|
drug = 'pyrazinamide'
|
|
gene = 'pncA'
|
|
gene_match = gene + '_p.'
|
|
|
|
#==========
|
|
# data dir
|
|
#==========
|
|
#indir = 'git/Data/pyrazinamide/input/original'
|
|
datadir = homedir + '/' + 'git/Data'
|
|
|
|
#=======
|
|
# input
|
|
#=======
|
|
#indir = 'git/Data/pyrazinamide/input/original'
|
|
indir = datadir + '/' + drug + '/' + 'input'
|
|
in_filename = '3pl1.fasta.txt'
|
|
infile = indir + '/' + in_filename
|
|
print('Input filename:', in_filename
|
|
, '\nInput path:', indir
|
|
, '\n============================================================')
|
|
|
|
#=======
|
|
# output
|
|
#=======
|
|
outdir = datadir + '/' + drug + '/' + 'output'
|
|
out_filename = gene.lower() + '_kd.csv'
|
|
outfile = outdir + '/' + out_filename
|
|
print('Output filename:', out_filename
|
|
, '\nOutput path:', outdir
|
|
, '\n=============================================================')
|
|
#%% end of variable assignment for input and output files
|
|
#=======================================================================
|
|
#===================
|
|
#calculate KD values: same as the expasy server
|
|
#===================
|
|
#%%specify window size for hydropathy profile computation
|
|
# https://web.expasy.org/protscale/pscale/protscale_help.html
|
|
my_window = 3
|
|
offset = round((my_window/2)-0.5)
|
|
|
|
fh = open(infile)
|
|
|
|
for record in SeqIO.parse(fh, 'fasta'):
|
|
id = record.id
|
|
seq = record.seq
|
|
num_residues = len(seq)
|
|
fh.close()
|
|
|
|
sequence = str(seq)
|
|
|
|
X = ProteinAnalysis(sequence)
|
|
|
|
kd_values = (X.protein_scale(ProtParamData.kd , window = my_window)) # edge weight is set to default (100%)
|
|
|
|
# sanity checks
|
|
print('Sequence Length:', num_residues)
|
|
print('kd_values Length:',len(kd_values))
|
|
print('Window Length:', my_window)
|
|
print('Window Offset:', offset)
|
|
print('=================================================================')
|
|
print('Checking:len(kd values) is as expected for the given window size & offset...')
|
|
expected_length = num_residues - (my_window - offset)
|
|
if len(kd_values) == expected_length:
|
|
print('PASS: expected and actual length of kd values match')
|
|
else:
|
|
print('FAIL: length mismatch'
|
|
,'\nExpected length:', expected_length
|
|
,'\nActual length:', len(kd_values)
|
|
, '\n=========================================================')
|
|
#===================
|
|
# creating two dfs
|
|
#===================
|
|
#%% make 2 dfs; 1) aa sequence and 2) kd_values. Then reset index for each df
|
|
# which will allow easy merging of the two dfs.
|
|
|
|
# df1: df of aa seq with index reset to start from 1 (reflective of the actual aa position in a sequence)
|
|
# Name column of wt as 'wild_type' to be the same name used in the file required for merging later.
|
|
dfSeq = pd.DataFrame({'wild_type_kd':list(sequence)})
|
|
dfSeq.index = np.arange(1, len(dfSeq) + 1) # python is not inclusive
|
|
|
|
# df2: df of kd_values with index reset to start from offset + 1 and subsequent matched length of the kd_values
|
|
dfVals = pd.DataFrame({'kd_values':kd_values})
|
|
dfVals.index = np.arange(offset + 1, len(dfVals) + 1 + offset)
|
|
|
|
# sanity checks
|
|
max(dfVals['kd_values'])
|
|
min(dfVals['kd_values'])
|
|
|
|
#===================
|
|
# concatenating dfs
|
|
#===================
|
|
# Merge the two on index
|
|
# (as these are now reflective of the aa position numbers): df1 and df2
|
|
# This will introduce NaN where there is missing values. In our case this
|
|
# will be 2 (first and last ones based on window size and offset)
|
|
# In our case this will be 2 (first and last ones)
|
|
# For pnca: the last position is not part of the struc, so not info loss
|
|
# Needless to say that this will be variable for other targets.
|
|
|
|
kd_df = pd.concat([dfSeq, dfVals], axis = 1)
|
|
|
|
#============================
|
|
# renaming index to position
|
|
#============================
|
|
kd_df = kd_df.rename_axis('position')
|
|
kd_df.head
|
|
print('=================================================================')
|
|
|
|
print('position col i.e. index should be numeric
|
|
, '\n===============================================================')
|
|
|
|
if kd_df.index.dtype == 'int64':
|
|
print('PASS: position col is numeric'
|
|
, '\ndtype is:', kd_df.index.dtype)
|
|
else:
|
|
print('FAIL: position col is not numeric'
|
|
, '\nConverting to numeric')
|
|
kd_df.index.astype('int64')
|
|
print('Checking dtype for after conversion:\n'
|
|
, '\ndtype is:', kd_df.index.dtype
|
|
, '\n=========================================================')
|
|
#===============
|
|
# writing file
|
|
#===============
|
|
print('Writing file:', out_filename
|
|
, '\nFilename:', out_filename
|
|
, '\nPath:', outdir
|
|
, '\n=============================================================')
|
|
|
|
kd_df.to_csv(outfile, header = True, index = True)
|
|
|
|
print('Finished writing:', out_filename
|
|
, '\nNo. of rows:', len(kd_df)
|
|
, '\nNo. of cols:', len(kd_df.columns)
|
|
, '\n=============================================================')
|
|
|
|
#===============
|
|
# plot: optional!
|
|
#===============#%% plot
|
|
# http://www.dalkescientific.com/writings/NBN/plotting.html
|
|
|
|
# FIXME: save fig
|
|
# extract just pdb if from 'id' to pass to title of plot
|
|
# foo = re.match(r'(^[0-9]{1}\w{3})', id).groups(1)
|
|
plot(kd_values, linewidth = 1.0)
|
|
#axis(xmin = 1, xmax = num_residues)
|
|
xlabel('Residue Number')
|
|
ylabel('Hydrophobicity')
|
|
title('K&D Hydrophobicity for ' + id)
|
|
show()
|
|
print('======================================================================')
|
|
#%% end of script
|
|
#=======================================================================
|