177 lines
4.9 KiB
R
Executable file
177 lines
4.9 KiB
R
Executable file
#!/usr/bin/env Rscript
|
|
#########################################################
|
|
# TASK: formatting data that will be used for various plots
|
|
|
|
# useful links
|
|
#https://stackoverflow.com/questions/38851592/r-append-column-in-a-dataframe-with-frequency-count-based-on-two-columns
|
|
#########################################################
|
|
# working dir and loading libraries
|
|
getwd()
|
|
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
|
getwd()
|
|
|
|
#source("Header_TT.R")
|
|
library(ggplot2)
|
|
library(data.table)
|
|
library(dplyr)
|
|
|
|
source("dirs.R")
|
|
|
|
require("getopt", quietly = TRUE) #cmd parse arguments
|
|
|
|
#========================================================
|
|
# command line args
|
|
#spec = matrix(c(
|
|
# "drug" , "d", 1, "character",
|
|
# "gene" , "g", 1, "character"
|
|
#), byrow = TRUE, ncol = 4)
|
|
|
|
#opt = getopt(spec)
|
|
|
|
#drug = opt$druggene = opt$gene
|
|
|
|
#if(is.null(drug)|is.null(gene)) {
|
|
# stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
|
|
#}
|
|
#========================================================
|
|
#======
|
|
# input
|
|
#======
|
|
#in_filename = "mcsm_complex1_normalised.csv"
|
|
in_filename_params = paste0(tolower(gene), "_all_params.csv")
|
|
infile_params = paste0(outdir, "/", in_filename_params)
|
|
cat(paste0("Input file 1:", infile_params) )
|
|
|
|
|
|
cat('columns based on variables:\n'
|
|
, drug
|
|
, '\n'
|
|
, dr_muts_col
|
|
, '\n'
|
|
, other_muts_col
|
|
, "\n"
|
|
, resistance_col
|
|
, '\n===============================================================')
|
|
|
|
#%%===============================================================
|
|
###########################
|
|
# Read file: struct params
|
|
###########################
|
|
cat("Reading struct params including mcsm:", in_filename_params)
|
|
|
|
my_df = read.csv(infile_params, header = T)
|
|
|
|
cat("\nInput dimensions:", dim(my_df))
|
|
|
|
###########################
|
|
# add foldx outcome category
|
|
# and foldx scaled values
|
|
|
|
# This will enable to always have these variables available
|
|
# when calling for plots
|
|
###########################
|
|
|
|
#------------------------------
|
|
# adding foldx scaled values
|
|
# scale data b/w -1 and 1
|
|
#------------------------------
|
|
n = which(colnames(my_df) == "ddg"); n
|
|
|
|
my_min = min(my_df[,n]); my_min
|
|
my_max = max(my_df[,n]); my_max
|
|
|
|
my_df$foldx_scaled = ifelse(my_df[,n] < 0
|
|
, my_df[,n]/abs(my_min)
|
|
, my_df[,n]/my_max)
|
|
# sanity check
|
|
my_min = min(my_df$foldx_scaled); my_min
|
|
my_max = max(my_df$foldx_scaled); my_max
|
|
|
|
if (my_min == -1 && my_max == 1){
|
|
cat("\nPASS: foldx ddg successfully scaled b/w -1 and 1"
|
|
, "\nProceeding with assigning foldx outcome category")
|
|
}else{
|
|
cat("\nFAIL: could not scale foldx ddg values"
|
|
, "Aborting!")
|
|
}
|
|
|
|
#------------------------------
|
|
# adding foldx outcome category
|
|
# ddg<0 = "Stabilising" (-ve)
|
|
#------------------------------
|
|
c1 = table(my_df$ddg < 0)
|
|
my_df$foldx_outcome = ifelse(my_df$ddg < 0, "Stabilising", "Destabilising")
|
|
c2 = table(my_df$ddg < 0)
|
|
|
|
if ( all(c1 == c2) ){
|
|
cat("\nPASS: foldx outcome successfully created")
|
|
}else{
|
|
cat("\nFAIL: foldx outcome could not be created. Aborting!")
|
|
exit()
|
|
}
|
|
|
|
###########################
|
|
# extract unique mutation entries
|
|
###########################
|
|
|
|
# check for duplicate mutations
|
|
if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){
|
|
cat(paste0("\nCAUTION:", " Duplicate mutations identified"
|
|
, "\nExtracting these..."))
|
|
dup_muts = my_df[duplicated(my_df$mutationinformation),]
|
|
dup_muts_nu = length(unique(dup_muts$mutationinformation))
|
|
cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts)
|
|
, "\nNo. of unique duplicate mutations:", dup_muts_nu
|
|
, "\n\nExtracting df with unique mutations only"))
|
|
my_df_u = my_df[!duplicated(my_df$mutationinformation),]
|
|
}else{
|
|
cat(paste0("\nNo duplicate mutations detected"))
|
|
my_df_u = my_df
|
|
}
|
|
|
|
upos = unique(my_df_u$position)
|
|
cat("\nDim of clean df:"); cat(dim(my_df_u))
|
|
cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n")
|
|
|
|
|
|
###########################
|
|
# extract mutations <10Angstroms and symbols
|
|
###########################
|
|
table(my_df_u$ligand_distance<10)
|
|
|
|
my_df_u_lig = my_df_u[my_df_u$ligand_distance <10,]
|
|
|
|
|
|
#==================
|
|
# Angstroms symbol
|
|
#==================
|
|
|
|
angstroms_symbol = "\u212b"
|
|
cat(paste0("There are ", nrow(my_df_u_lig), " sites lying within 10", angstroms_symbol, " of the ligand\n"))
|
|
|
|
#==================
|
|
# Delta symbol
|
|
#==================
|
|
|
|
delta_symbol = "\u0394"; delta_symbol
|
|
|
|
###########################
|
|
# variables for my cols
|
|
###########################
|
|
|
|
mcsm_red2 = "#ae301e" # most negative
|
|
mcsm_red1 = "#f8766d"
|
|
|
|
mcsm_mid = "white" # middle
|
|
|
|
mcsm_blue1 = "#00bfc4"
|
|
mcsm_blue2 = "#007d85" # most positive
|
|
|
|
|
|
########################################################################
|
|
# end of data extraction and cleaning for plots #
|
|
########################################################################
|
|
# clear variables
|
|
rm(opt, spec)
|
|
|
|
|