365 lines
11 KiB
R
365 lines
11 KiB
R
#!/usr/bin/Rscript
|
|
#!/usr/bin/env Rscript
|
|
|
|
#########################################################
|
|
# TASK: To calculate Allele Frequency and
|
|
# Odds Ratio from master data
|
|
#########################################################
|
|
# working dir and loading libraries
|
|
getwd()
|
|
setwd('~/git/LSHTM_analysis/scripts')
|
|
cat(c(getwd(),'\n'))
|
|
|
|
# cmd parse arguments
|
|
require('getopt', quietly = TRUE)
|
|
#========================================================
|
|
# command line args
|
|
spec = matrix(c(
|
|
"drug" , "d", 1, "character",
|
|
"gene" , "g", 1, "character"
|
|
), byrow = TRUE, ncol = 4)
|
|
|
|
opt = getopt(spec)
|
|
|
|
drug = opt$drug
|
|
gene = opt$gene
|
|
|
|
if(is.null(drug)|is.null(gene)) {
|
|
stop('Missing arguments: --drug and --gene must both be specified (case-sensitive)')
|
|
}
|
|
|
|
#options(scipen = 999) #disabling scientific notation in R.
|
|
#========================================================
|
|
#%% variable assignment: input and output paths & filenames
|
|
|
|
gene_match = paste0(gene,'_p.')
|
|
cat(gene_match)
|
|
|
|
#=============
|
|
# directories
|
|
#=============
|
|
datadir = paste0('~/git/Data')
|
|
indir = paste0(datadir, '/', drug, '/', 'input')
|
|
outdir = paste0(datadir, '/', drug, '/', 'output')
|
|
|
|
#===========
|
|
# input
|
|
#===========
|
|
# input file 1: master data
|
|
#in_filename_master = 'original_tanushree_data_v2.csv' #19K
|
|
in_filename_master = 'mtb_gwas_meta_v6.csv' #35k
|
|
infile_master = paste0(datadir, '/', in_filename_master)
|
|
cat(paste0('Reading infile1: raw data', ' ', infile_master) )
|
|
|
|
# input file 2: gene associated meta data file to extract valid snps and add calcs to.
|
|
# This is outfile_metadata from data_extraction.py
|
|
in_filename_metadata = paste0(tolower(gene), '_metadata.csv')
|
|
infile_metadata = paste0(outdir, '/', in_filename_metadata)
|
|
cat(paste0('Reading input file 2 i.e gene associated metadata:', infile_metadata))
|
|
|
|
#===========
|
|
# output
|
|
#===========
|
|
#out_filename_af_or = paste0(tolower(gene), '_meta_data_with_AF_OR.csv')
|
|
out_filename_af_or = paste0(tolower(gene), '_af_or.csv')
|
|
outfile_af_or = paste0(outdir, '/', out_filename_af_or)
|
|
cat(paste0('Output file with full path:', outfile_af_or))
|
|
#%% end of variable assignment for input and output files
|
|
|
|
#########################################################
|
|
# 1: Read master/raw data stored in Data/
|
|
#########################################################
|
|
raw_data_all = read.csv(infile_master, stringsAsFactors = F)
|
|
|
|
# building cols to extract
|
|
dr_muts_col = paste0('dr_mutations_', drug)
|
|
other_muts_col = paste0('other_mutations_', drug)
|
|
|
|
cat('Extracting columns based on variables:\n'
|
|
, drug
|
|
, '\n'
|
|
, dr_muts_col
|
|
, '\n'
|
|
, other_muts_col
|
|
, '\n===============================================================')
|
|
|
|
raw_data = raw_data_all[,c("id"
|
|
, drug
|
|
, dr_muts_col
|
|
, other_muts_col)]
|
|
rm(raw_data_all)
|
|
|
|
rm(indir, in_filename_master, infile_master)
|
|
|
|
#===========
|
|
# 1a: exclude na
|
|
#===========
|
|
raw_data = raw_data[!is.na(raw_data[[drug]]),]
|
|
|
|
total_samples = length(unique(raw_data$id))
|
|
cat(paste0('Total samples without NA in', ' ', drug, 'is:', total_samples))
|
|
|
|
# sanity check: should be true
|
|
is.numeric(total_samples)
|
|
|
|
#===========
|
|
# 1b: combine the two mutation columns
|
|
#===========
|
|
all_muts_colname = paste0('all_mutations_', drug)
|
|
print(paste('New column added:', all_muts_colname))
|
|
#raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide, raw_data$other_mutations_pyrazinamide)
|
|
raw_data[[all_muts_colname]] = paste(raw_data[[dr_muts_col]], raw_data[[other_muts_col]])
|
|
head(raw_data[[all_muts_colname]])
|
|
|
|
#===========
|
|
# 1c: create yet another column that contains all the mutations but in lower case
|
|
#===========
|
|
head(raw_data[[all_muts_colname]])
|
|
raw_data$all_muts_gene = tolower(raw_data[[all_muts_colname]])
|
|
head(raw_data$all_muts_gene)
|
|
|
|
# sanity checks
|
|
#table(grepl("gene_p",raw_data$all_muts_gene))
|
|
cat(paste0('converting gene match:', gene_match, ' ', 'to lowercase'))
|
|
gene_match = tolower(gene_match)
|
|
|
|
table(grepl(gene_match,raw_data$all_muts_gene))
|
|
|
|
# sanity check: should be TRUE
|
|
#sum(table(grepl("gene_p",raw_data$all_muts_gene))) == total_samples
|
|
# sanity check
|
|
if(sum(table(grepl(gene_match, raw_data$all_muts_gene))) == total_samples){
|
|
cat('PASS: Total no. of samples match')
|
|
} else{
|
|
cat('FAIL: No. of samples mismatch')
|
|
}
|
|
|
|
#########################################################
|
|
# 2: Read valid snps for which OR
|
|
# can be calculated
|
|
#########################################################
|
|
cat(paste0('Reading gene associated metadata:', infile_metadata))
|
|
|
|
gene_metadata = read.csv(infile_metadata
|
|
#, file.choose()
|
|
, stringsAsFactors = F
|
|
, header = T)
|
|
|
|
# get just the variable name from variable
|
|
#deparse(substitute(myvar)
|
|
print(paste('Dim of', deparse(substitute(gene_metadata)), ':')); print(dim(gene_metadata))
|
|
|
|
# clear variables
|
|
rm(in_filename_metadata, infile_metadata)
|
|
|
|
# count na in drug column
|
|
tot_drug_na = sum(is.na(gene_metadata[[drug]]))
|
|
expected_rows = nrow(gene_metadata) - tot_drug_na
|
|
|
|
# drop na from the drug column
|
|
gene_snps_or = gene_metadata[!is.na(gene_metadata[[drug]]),]
|
|
|
|
# sanity check
|
|
if(nrow(gene_snps_or) == expected_rows){
|
|
cat('PASS: no. of rows match with expected_rows')
|
|
} else{
|
|
cat('FAIL: nrows mismatch.')
|
|
}
|
|
|
|
# extract unique snps to iterate over for AF and OR calcs
|
|
gene_snps_unique = unique(gene_snps_or$mutation)
|
|
|
|
cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_snps_unique)))
|
|
|
|
#===========================================================================================
|
|
#########################
|
|
# custom chisq function:
|
|
# To calculate OR
|
|
#########################
|
|
#i = "pnca_p.trp68gly"
|
|
i = "pnca_p.gly162asp"
|
|
|
|
mut = grepl(i,raw_data$all_muts_gene)
|
|
mut = as.numeric(mut)
|
|
|
|
dst = raw_data[[drug]]
|
|
|
|
#x = as.numeric(mut)
|
|
#y = dst
|
|
|
|
mychisq_or = function(x,y){
|
|
tab = as.matrix(table(x,y))
|
|
a = tab[2,2]
|
|
if (a==0){ a<-0.5}
|
|
b = tab[2,1]
|
|
if (b==0){ b<-0.5}
|
|
c = tab[1,2]
|
|
if (c==0){ c<-0.5}
|
|
d = tab[1,1]
|
|
if (d==0){ d<-0.5}
|
|
(a/b)/(c/d)
|
|
|
|
}
|
|
|
|
or_mychisq = mychisq_or(dst, mut)
|
|
print(paste0('mychisq OR:', or_mychisq ))
|
|
|
|
odds_fisher = fisher.test(table(dst, mut))$estimate
|
|
pval_fisher = fisher.test(table(dst, mut))$p.value
|
|
print(paste0('fisher OR:', odds_fisher))
|
|
print(paste0('fisher p-value:', pval_fisher))
|
|
|
|
model<-glm(dst ~ mut, family = binomial)
|
|
or_logistic = exp(summary(model)$coefficients[2,1])
|
|
print(paste0('logistic OR:', or_logistic))
|
|
|
|
pval_logistic = summary(model)$coefficients[2,4]
|
|
print(paste0('logistic pval:', pval_logistic))
|
|
|
|
#=====================================
|
|
#OR calcs using the following 4
|
|
#1) chisq.test
|
|
#2) fisher
|
|
#3) modified chisq.test
|
|
#4) logistic
|
|
#5) adjusted logistic?
|
|
#6) kinship (separate script)
|
|
#=====================================
|
|
#snps <- gene_snps_unique[1:2]# TEST FOR a few muts
|
|
snps <- gene_snps_unique
|
|
cat(paste0('Running calculations for:', length(snps), ' nssnps\n'
|
|
, 'gene: ', gene
|
|
, '\ndrug: ', drug ))
|
|
|
|
# DV: <drug> 0 or 1
|
|
dst = raw_data[[drug]]
|
|
|
|
# initialise an empty df
|
|
ors_df = data.frame()
|
|
|
|
x = sapply(snps,function(m){
|
|
|
|
mut = grepl(m,raw_data$all_muts_gene)
|
|
mut = as.numeric(mut)
|
|
cat(paste0('Running mutation:', m, '\n'))
|
|
|
|
model<-glm(dst ~ mut, family = binomial)
|
|
|
|
#-------------------
|
|
# allele frequency
|
|
#-------------------
|
|
afs = mean(mut)
|
|
|
|
#-------------------
|
|
# logistic model
|
|
#-------------------
|
|
beta_logistic = summary(model)$coefficients[2,1]
|
|
|
|
or_logistic = exp(summary(model)$coefficients[2,1])
|
|
#print(paste0('logistic OR:', or_logistic))
|
|
|
|
pval_logistic = summary(model)$coefficients[2,4]
|
|
#print(paste0('logistic pval:', pval_logistic))
|
|
|
|
se_logistic = summary(model)$coefficients[2,2]
|
|
#print(paste0('logistic SE:', se_logistic))
|
|
|
|
zval_logistic = summary(model)$coefficients[2,3]
|
|
#print(paste0('logistic zval:', zval_logistic))
|
|
|
|
ci_mod = exp(confint(model))[2,]
|
|
#print(paste0('logistic CI:', ci_mod))
|
|
|
|
ci_lower_logistic = ci_mod[["2.5 %"]]
|
|
ci_upper_logistic = ci_mod[["97.5 %"]]
|
|
|
|
#-------------------
|
|
# custom_chisq and fisher: OR p-value and CI
|
|
#-------------------
|
|
or_mychisq = mychisq_or(dst, mut)
|
|
#print(paste0('mychisq OR:', or_mychisq))
|
|
|
|
odds_fisher = fisher.test(table(dst, mut))$estimate
|
|
or_fisher = odds_fisher[[1]]
|
|
|
|
pval_fisher = fisher.test(table(dst, mut))$p.value
|
|
|
|
ci_lower_fisher = fisher.test(table(dst, mut))$conf.int[1]
|
|
ci_upper_fisher = fisher.test(table(dst, mut))$conf.int[2]
|
|
|
|
#-------------------
|
|
# chi sq estimates
|
|
#-------------------
|
|
estimate_chisq = chisq.test(table(dst, mut))$statistic; estimate_chisq
|
|
est_chisq = estimate_chisq[[1]]; print(est_chisq)
|
|
|
|
pval_chisq = chisq.test(table(dst, mut))$p.value
|
|
|
|
# build a row to append to df
|
|
row = data.frame(mutation = m
|
|
, af = afs
|
|
, beta_logistic = beta_logistic
|
|
, or_logistic = or_logistic
|
|
, pval_logistic = pval_logistic
|
|
, se_logistic = se_logistic
|
|
, zval_logistic = zval_logistic
|
|
, ci_low_logistic = ci_lower_logistic
|
|
, ci_hi_logistic = ci_upper_logistic
|
|
, or_mychisq = or_mychisq
|
|
, or_fisher = or_fisher
|
|
, pval_fisher = pval_fisher
|
|
, ci_low_fisher= ci_lower_fisher
|
|
, ci_hi_fisher = ci_upper_fisher
|
|
, est_chisq = est_chisq
|
|
, pval_chisq = pval_chisq
|
|
)
|
|
#print(row)
|
|
|
|
ors_df <<- rbind(ors_df, row)
|
|
|
|
})
|
|
|
|
#%%======================================================
|
|
# Writing file with calculated ORs and AFs
|
|
cat(paste0('writing output file: '
|
|
, '\nFile: ', outfile_af_or))
|
|
|
|
write.csv(ors_df, outfile_af_or
|
|
, row.names = F)
|
|
|
|
cat(paste0('Finished writing:'
|
|
, outfile_af_or
|
|
, '\nNo. of rows: ', nrow(ors_df)
|
|
, '\nNo. of cols: ', ncol(ors_df)))
|
|
#%%======================================================
|
|
cat('\n======sneak peek into a few muts with prominent or and p-vals=======\n')
|
|
|
|
cat(paste0('======================================='
|
|
, '\nmutation with highest logistic OR:'
|
|
, '\n=======================================\n'))
|
|
print(ors_df[which(ors_df$or_logistic == max(ors_df$or_logistic)),])
|
|
|
|
cat(paste0('======================================='
|
|
, '\nmutation with highest mychisq OR:'
|
|
, '\n=======================================\n'))
|
|
print(ors_df[which(ors_df$or_mychisq == max(ors_df$or_mychisq)),])
|
|
|
|
# gives too many due to Inf
|
|
#cat(paste0('======================================='
|
|
#, '\nmutation with highest fisher OR:'
|
|
#, '\n=======================================\n'))
|
|
#print(ors_df[which(ors_df$or_fisher == max(ors_df$or_fisher)),])
|
|
|
|
cat(paste0('======================================='
|
|
, '\nmutation with lowest logistic pval:'
|
|
, '\n=======================================\n'))
|
|
print(ors_df[which(ors_df$pval_logistic == min(ors_df$pval_logistic)),])
|
|
|
|
cat(paste0('======================================='
|
|
, '\nmutation with lowest fisher pval:'
|
|
, '\n=======================================\n'))
|
|
print(ors_df[which(ors_df$pval_fisher == min(ors_df$pval_fisher)),])
|
|
|
|
#**********************************************************
|
|
cat('End of script: calculated AF, OR, pvalues and saved file')
|
|
#**********************************************************
|