LSHTM_analysis/scripts/plotting/plotting_thesis/version1/gg_pairs_all.R

175 lines
5.7 KiB
R
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R")
#source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
my_gg_pairs=function(plot_df, plot_title
, tt_args_size = 2.5
, gp_args_size = 2.5){
ggpairs(plot_df,
columns = 1:(ncol(plot_df)-1),
upper = list(
continuous = wrap('cor', # ggally_cor()
method = "spearman",
use = "pairwise.complete.obs",
title="ρ",
digits=2,
justify_labels = "centre",
title_args=list(size=tt_args_size, colour="black"),#2.5
group_args=list(size=gp_args_size)#2.5
)
),
lower = list(
continuous = wrap("points",
alpha = 0.7,
size=0.125),
combo = wrap("dot",
alpha = 0.7,
size=0.125)
),
aes(colour = factor(ifelse(dst_mode==0,
"S",
"R") ),
alpha = 0.5),
title=plot_title) +
scale_colour_manual(values = c("red", "blue")) +
scale_fill_manual(values = c("red", "blue")) #+
# theme(text = element_text(size=7,
# face="bold"))
}
DistCutOff = 10
###########################################################################
geneL_normal = c("pnca")
geneL_na = c("gid", "rpob")
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
merged_df3 = as.data.frame(merged_df3)
corr_plotdf = corr_data_extract(merged_df3
, gene = gene
, drug = drug
, extract_scaled_cols = F)
aff_dist_cols = colnames(corr_plotdf)[grep("Dist", colnames(corr_plotdf))]
static_cols = c("Log10(MAF)"
, "Log10(OR)"
)
############################################################
#=============================================
# Creating masked df for affinity data
#=============================================
corr_affinity_df = corr_plotdf
#----------------------
# Mask affinity columns
#-----------------------
corr_affinity_df[corr_affinity_df["Lig-Dist"]>DistCutOff,"mCSM-lig"]=0
corr_affinity_df[corr_affinity_df["Lig-Dist"]>DistCutOff,"mmCSM-lig"]=0
if (tolower(gene)%in%geneL_ppi2){
corr_affinity_df[corr_affinity_df["PPI-Dist"]>DistCutOff,"mCSM-PPI2"]=0
}
# if (tolower(gene)%in%geneL_na){
# corr_affinity_df[corr_affinity_df["NCA-Dist"]>DistCutOff,"mCSM-NA"]=0
# }
# count 0
#res <- colSums(corr_affinity_df==0)/nrow(corr_affinity_df)*100
unmasked_vals <- nrow(corr_affinity_df) - colSums(corr_affinity_df==0)
unmasked_vals
##########################################################
#================
# Stability
#================
corr_ps_colnames = c(static_cols
, "DUET"
, "FoldX"
, "DeepDDG"
, "Dynamut2"
, aff_dist_cols
, "dst_mode")
corr_df_ps = corr_plotdf[, corr_ps_colnames]
# Plot #1
plot_corr_df_ps = my_gg_pairs(corr_df_ps, plot_title="Stability estimates")
##########################################################
#================
# Conservation
#================
corr_conservation_cols = c( static_cols
, "ConSurf"
, "SNAP2"
, "PROVEAN"
#, aff_dist_cols
, "dst_mode"
)
corr_df_cons = corr_plotdf[, corr_conservation_cols]
# Plot #2
plot_corr_df_cons = my_gg_pairs(corr_df_cons, plot_title="Conservation estimates")
##########################################################
#================
# Affinity: lig, ppi and na as applicable
#================
#corr_df_lig = corr_plotdf[corr_plotdf["Lig-Dist"]<DistCutOff,]
common_aff_colnames = c("mCSM-lig"
, "mmCSM-lig")
if (tolower(gene)%in%geneL_normal){
aff_colnames = common_aff_colnames
}
if (tolower(gene)%in%geneL_ppi2){
aff_colnames = c(common_aff_colnames, "mCSM-PPI2")
}
if (tolower(gene)%in%geneL_na){
aff_colnames = c(common_aff_colnames, "mCSM-NA")
}
# building ffinal affinity colnames for correlation
corr_aff_colnames = c(static_cols
, aff_colnames
, "dst_mode") # imp
corr_df_aff = corr_affinity_df[, corr_aff_colnames]
colnames(corr_df_aff)
# Plot #3
plot_corr_df_aff = my_gg_pairs(corr_df_aff, plot_title="Affinity estimates", tt_args_size = 4, gp_args_size =4)
#=============
# combine
#=============
#png("~/tmp/gg_pairs_all.png", height = 6, width=11.75, unit="in",res=300)
png(paste0(outdir_images
,tolower(gene)
,"_CorrAB.png"), height = 6, width=11.75, unit="in",res=300)
cowplot::plot_grid(ggmatrix_gtable(plot_corr_df_ps),
ggmatrix_gtable(plot_corr_df_cons),
# ggmatrix_gtable(plot_corr_df_aff),
# nrow=1, ncol=3, rel_heights = 7,7,3
nrow=1,
#rel_heights = 1,1
labels = "AUTO",
label_size = 12)
dev.off()
# affinity corr
#png("~/tmp/gg_pairs_affinity.png", height =7, width=7, unit="in",res=300)
png(paste0(outdir_images
,tolower(gene)
,"_CorrC.png"), height =7, width=7, unit="in",res=300)
cowplot::plot_grid(ggmatrix_gtable(plot_corr_df_aff),
labels = "C",
label_size = 12)
dev.off()